
F01_DEIT8393_09_GE_TTL_final.fm Page 1 Tuesday, April 19, 2022 12:00 PM

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page of appearance
or in the Credits on pages.

Cover image by Ink Drop/ Shutterstock

Pearson Education Limited
KAO Two
KAO Park
Hockham Way
Harlow
Essex
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2023

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work, have been asserted by them in accordance with the Copyright,
Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled C How to Program, 9th Edition, ISBN 978-0-13-739839-3 by Paul Deitel and Harvey Deitel
published by Pearson Education © 2022.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any
trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.
For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions
department, please visit www.pearsoned.com/permissions/.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access
to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any
time.

ISBN 10: 1-292-43707-3 (print)
ISBN 13: 978-1-292-43707-1 (print)
eBook ISBN 13: 978-1-292-43699-9 (uPDF)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

1 22

Typeset in Times NR MT Pro by B2R Technologies Pvt. Ltd.

http://www.pearsoned.com/permissions/
http://www.pearsonglobaleditions.com

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

F01_DEIT8393_09_GE_TTL_final.fm Page 3 Tuesday, April 19, 2022 12:00 PM

Trademarks
Apple, Xcode, Swift, Objective-C, iOS and macOS are trademarks or registered
trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds.

Microsoft and/or its respective suppliers make no representations about the suit-
ability of the information contained in the documents and related graphics published
as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective sup-
pliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event
shall Microsoft and/or its respective suppliers be liable for any special, indirect or con-
sequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of information available from
the services.

The documents and related graphics contained herein could include technical inac-
curacies or typographical errors. Changes are periodically added to the information
herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

F01_DEIT8393_09_GE_TTL_final.fm Page 4 Tuesday, April 19, 2022 12:00 PM

Appendices E–H are PDF documents posted online at the book’s Companion
Website (located at https://www.pearsonglobaleditions.com).

Preface 17

Before You Begin 49

1 Introduction to Computers and C 53
1.1 Introduction 54
1.2 Hardware and Software 56

1.2.1 Moore’s Law 56
1.2.2 Computer Organization 57

1.3 Data Hierarchy 60
1.4 Machine Languages, Assembly Languages and High-Level Languages 63
1.5 Operating Systems 65
1.6 The C Programming Language 68
1.7 The C Standard Library and Open-Source Libraries 70
1.8 Other Popular Programming Languages 71
1.9 Typical C Program-Development Environment 73

1.9.1 Phase 1: Creating a Program 73
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 73
1.9.3 Phase 4: Linking 74
1.9.4 Phase 5: Loading 75
1.9.5 Phase 6: Execution 75
1.9.6 Problems That May Occur at Execution Time 75
1.9.7 Standard Input, Standard Output and Standard Error Streams 76

1.10 Test-Driving a C Application in Windows, Linux and macOS 76
1.10.1 Compiling and Running a C Application with Visual Studio

2019 Community Edition on Windows 10 77
1.10.2 Compiling and Running a C Application with Xcode on

macOS 81

Contents

DEIT8393_09_GE_Final.book Page 5 Tuesday, April 12, 2022 3:20 PM

https://www.pearsonglobaleditions.com

6 Contents

1.10.3 Compiling and Running a C Application with GNU gcc
on Linux 84

1.10.4 Compiling and Running a C Application in a GCC Docker
Container Running Natively over Windows 10, macOS
or Linux 86

1.11 Internet, World Wide Web, the Cloud and IoT 87
1.11.1 The Internet: A Network of Networks 88
1.11.2 The World Wide Web: Making the Internet User-Friendly 89
1.11.3 The Cloud 89
1.11.4 The Internet of Things 90

1.12 Software Technologies 91
1.13 How Big Is Big Data? 91

1.13.1 Big-Data Analytics 97
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 98

1.14 Case Study—A Big-Data Mobile Application 99
1.15 AI—at the Intersection of Computer Science and Data Science 100

2 Intro to C Programming 107
2.1 Introduction 108
2.2 A Simple C Program: Printing a Line of Text 108
2.3 Another Simple C Program: Adding Two Integers 112
2.4 Memory Concepts 116
2.5 Arithmetic in C 117
2.6 Decision Making: Equality and Relational Operators 121
2.7 Secure C Programming 125

3 Structured Program Development 137
3.1 Introduction 138
3.2 Algorithms 138
3.3 Pseudocode 139
3.4 Control Structures 140
3.5 The if Selection Statement 142
3.6 The if…else Selection Statement 144
3.7 The while Iteration Statement 148
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 149
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Iteration 151
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Statements 158
3.11 Assignment Operators 162
3.12 Increment and Decrement Operators 163
3.13 Secure C Programming 166

F02_DEIT8393_09_GE_TOC_final.fm Page 6 Wednesday, April 27, 2022 10:06 AM

Contents 7

4 Program Control 185
4.1 Introduction 186
4.2 Iteration Essentials 186
4.3 Counter-Controlled Iteration 187
4.4 for Iteration Statement 188
4.5 Examples Using the for Statement 192
4.6 switch Multiple-Selection Statement 196
4.7 do…while Iteration Statement 202
4.8 break and continue Statements 203
4.9 Logical Operators 205
4.10 Confusing Equality (==) and Assignment (=) Operators 209
4.11 Structured-Programming Summary 210
4.12 Secure C Programming 215

5 Functions 231
5.1 Introduction 232
5.2 Modularizing Programs in C 232
5.3 Math Library Functions 234
5.4 Functions 235
5.5 Function Definitions 236

5.5.1 square Function 236
5.5.2 maximum Function 239

5.6 Function Prototypes: A Deeper Look 240
5.7 Function-Call Stack and Stack Frames 243
5.8 Headers 247
5.9 Passing Arguments by Value and by Reference 249
5.10 Random-Number Generation 249
5.11 Game Simulation Case Study: Rock, Paper, Scissors 254
5.12 Storage Classes 260
5.13 Scope Rules 262
5.14 Recursion 265
5.15 Example Using Recursion: Fibonacci Series 269
5.16 Recursion vs. Iteration 272
5.17 Secure C Programming—Secure Random-Number Generation 275

Random-Number Simulation Case Study: The Tortoise and the Hare 294

6 Arrays 297
6.1 Introduction 298
6.2 Arrays 298
6.3 Defining Arrays 300
6.4 Array Examples 300

F02_DEIT8393_09_GE_TOC_final.fm Page 7 Wednesday, April 27, 2022 10:06 AM

8 Contents

6.4.1 Defining an Array and Using a Loop to Set the Array’s
Element Values 301

6.4.2 Initializing an Array in a Definition with an Initializer List 302
6.4.3 Specifying an Array’s Size with a Symbolic Constant and

Initializing Array Elements with Calculations 303
6.4.4 Summing the Elements of an Array 304
6.4.5 Using Arrays to Summarize Survey Results 304
6.4.6 Graphing Array Element Values with Bar Charts 306
6.4.7 Rolling a Die 60,000,000 Times and Summarizing

the Results in an Array 307
6.5 Using Character Arrays to Store and Manipulate Strings 309

6.5.1 Initializing a Character Array with a String 309
6.5.2 Initializing a Character Array with an Initializer List

of Characters 309
6.5.3 Accessing the Characters in a String 309
6.5.4 Inputting into a Character Array 309
6.5.5 Outputting a Character Array That Represents a String 310
6.5.6 Demonstrating Character Arrays 310

6.6 Static Local Arrays and Automatic Local Arrays 312
6.7 Passing Arrays to Functions 314
6.8 Sorting Arrays 318
6.9 Intro to Data Science Case Study: Survey Data Analysis 321
6.10 Searching Arrays 326

6.10.1 Searching an Array with Linear Search 326
6.10.2 Searching an Array with Binary Search 328

6.11 Multidimensional Arrays 332
6.11.1 Illustrating a Two-Dimensional Array 332
6.11.2 Initializing a Double-Subscripted Array 333
6.11.3 Setting the Elements in One Row 335
6.11.4 Totaling the Elements in a Two-Dimensional Array 335
6.11.5 Two-Dimensional Array Manipulations 335

6.12 Variable-Length Arrays 339
6.13 Secure C Programming 343

7 Pointers 363
7.1 Introduction 364
7.2 Pointer Variable Definitions and Initialization 365
7.3 Pointer Operators 366
7.4 Passing Arguments to Functions by Reference 369
7.5 Using the const Qualifier with Pointers 373

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data 374

DEIT8393_09_GE_Final.book Page 8 Tuesday, April 12, 2022 3:20 PM

Contents 9

7.5.2 Printing a String One Character at a Time Using a
Non-Constant Pointer to Constant Data 374

7.5.3 Attempting to Modify a Constant Pointer to
Non-Constant Data 376

7.5.4 Attempting to Modify a Constant Pointer to Constant Data 377
7.6 Bubble Sort Using Pass-By-Reference 378
7.7 sizeof Operator 382
7.8 Pointer Expressions and Pointer Arithmetic 384

7.8.1 Pointer Arithmetic Operators 385
7.8.2 Aiming a Pointer at an Array 385
7.8.3 Adding an Integer to a Pointer 385
7.8.4 Subtracting an Integer from a Pointer 386
7.8.5 Incrementing and Decrementing a Pointer 386
7.8.6 Subtracting One Pointer from Another 386
7.8.7 Assigning Pointers to One Another 386
7.8.8 Pointer to void 386
7.8.9 Comparing Pointers 387

7.9 Relationship between Pointers and Arrays 387
7.9.1 Pointer/Offset Notation 387
7.9.2 Pointer/Subscript Notation 388
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 388
7.9.4 Demonstrating Pointer Subscripting and Offsets 388
7.9.5 String Copying with Arrays and Pointers 390

7.10 Arrays of Pointers 392
7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 393
7.12 Function Pointers 398

7.12.1 Sorting in Ascending or Descending Order 398
7.12.2 Using Function Pointers to Create a Menu-Driven System 401

7.13 Secure C Programming 403
Special Section: Building Your Own Computer as a Virtual Machine 417
Special Section—Embedded Systems Programming Case Study:
Robotics with the Webots Simulator 424

8 Characters and Strings 441
8.1 Introduction 442
8.2 Fundamentals of Strings and Characters 442
8.3 Character-Handling Library 444

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 445
8.3.2 Functions islower, isupper, tolower and toupper 447
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 448

8.4 String-Conversion Functions 450
8.4.1 Function strtod 450

F02_DEIT8393_09_GE_TOC_final.fm Page 9 Wednesday, April 27, 2022 10:06 AM

10 Contents

8.4.2 Function strtol 451
8.4.3 Function strtoul 452

8.5 Standard Input/Output Library Functions 453
8.5.1 Functions fgets and putchar 453
8.5.2 Function getchar 455
8.5.3 Function sprintf 455
8.5.4 Function sscanf 456

8.6 String-Manipulation Functions of the String-Handling Library 457
8.6.1 Functions strcpy and strncpy 458
8.6.2 Functions strcat and strncat 459

8.7 Comparison Functions of the String-Handling Library 460
8.8 Search Functions of the String-Handling Library 462

8.8.1 Function strchr 463
8.8.2 Function strcspn 464
8.8.3 Function strpbrk 464
8.8.4 Function strrchr 465
8.8.5 Function strspn 465
8.8.6 Function strstr 466
8.8.7 Function strtok 467

8.9 Memory Functions of the String-Handling Library 468
8.9.1 Function memcpy 469
8.9.2 Function memmove 470
8.9.3 Function memcmp 470
8.9.4 Function memchr 471
8.9.5 Function memset 471

8.10 Other Functions of the String-Handling Library 473
8.10.1 Function strerror 473
8.10.2 Function strlen 473

8.11 Secure C Programming 474
Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex 488
Secure C Programming Case Study: Public-Key Cryptography 494

9 Formatted Input/Output 503
9.1 Introduction 504
9.2 Streams 504
9.3 Formatting Output with printf 505
9.4 Printing Integers 506
9.5 Printing Floating-Point Numbers 507

9.5.1 Conversion Specifiers e, E and f 508
9.5.2 Conversion Specifiers g and G 508
9.5.3 Demonstrating Floating-Point Conversion Specifiers 509

9.6 Printing Strings and Characters 510

DEIT8393_09_GE_Final.book Page 10 Tuesday, April 12, 2022 3:20 PM

Contents 11

9.7 Other Conversion Specifiers 511
9.8 Printing with Field Widths and Precision 512

9.8.1 Field Widths for Integers 512
9.8.2 Precisions for Integers, Floating-Point Numbers and Strings 513
9.8.3 Combining Field Widths and Precisions 514

9.9 printf Format Flags 515
9.9.1 Right- and Left-Alignment 515
9.9.2 Printing Positive and Negative Numbers with and without

the + Flag 516
9.9.3 Using the Space Flag 516
9.9.4 Using the # Flag 517
9.9.5 Using the 0 Flag 517

9.10 Printing Literals and Escape Sequences 518
9.11 Formatted Input with scanf 519

9.11.1 scanf Syntax 520
9.11.2 scanf Conversion Specifiers 520
9.11.3 Reading Integers 521
9.11.4 Reading Floating-Point Numbers 522
9.11.5 Reading Characters and Strings 522
9.11.6 Using Scan Sets 523
9.11.7 Using Field Widths 524
9.11.8 Skipping Characters in an Input Stream 525

9.12 Secure C Programming 526

10 Structures, Unions, Bit Manipulation and
Enumerations 535

10.1 Introduction 536
10.2 Structure Definitions 537

10.2.1 Self-Referential Structures 537
10.2.2 Defining Variables of Structure Types 538
10.2.3 Structure Tag Names 538
10.2.4 Operations That Can Be Performed on Structures 538

10.3 Initializing Structures 540
10.4 Accessing Structure Members with . and -> 540
10.5 Using Structures with Functions 542
10.6 typedef 542
10.7 Random-Number Simulation Case Study: High-Performance Card

Shuffling and Dealing 543
10.8 Unions 546

10.8.1 union Declarations 547
10.8.2 Allowed unions Operations 547
10.8.3 Initializing unions in Declarations 547
10.8.4 Demonstrating unions 548

DEIT8393_09_GE_Final.book Page 11 Tuesday, April 12, 2022 3:20 PM

12 Contents

10.9 Bitwise Operators 549
10.9.1 Displaying an Unsigned Integer’s Bits 550
10.9.2 Making Function displayBits More Generic and Portable 551
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 552
10.9.4 Using the Bitwise Left- and Right-Shift Operators 555
10.9.5 Bitwise Assignment Operators 557

10.10 Bit Fields 558
10.10.1 Defining Bit Fields 558
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 559
10.10.3 Unnamed Bit Fields 561

10.11 Enumeration Constants 561
10.12 Anonymous Structures and Unions 563
10.13 Secure C Programming 564

Special Section: Raylib Game-Programming Case Studies 574
Game-Programming Case Study Exercise: SpotOn Game 580
Game-Programming Case Study: Cannon Game 581
Visualization with raylib—Law of Large Numbers Animation 583
Case Study: The Tortoise and the Hare with raylib—
a Multimedia “Extravaganza” 585
Random-Number Simulation Case Study: High-Performance
Card Shuffling and Dealing with Card Images and raylib 587

11 File Processing 593
11.1 Introduction 594
11.2 Files and Streams 594
11.3 Creating a Sequential-Access File 596

11.3.1 Pointer to a FILE 597
11.3.2 Using fopen to Open a File 597
11.3.3 Using feof to Check for the End-of-File Indicator 597
11.3.4 Using fprintf to Write to a File 598
11.3.5 Using fclose to Close a File 598
11.3.6 File-Open Modes 599

11.4 Reading Data from a Sequential-Access File 601
11.4.1 Resetting the File Position Pointer 602
11.4.2 Credit Inquiry Program 602

11.5 Random-Access Files 606
11.6 Creating a Random-Access File 607
11.7 Writing Data Randomly to a Random-Access File 609

11.7.1 Positioning the File Position Pointer with fseek 611
11.7.2 Error Checking 612

11.8 Reading Data from a Random-Access File 612

DEIT8393_09_GE_Final.book Page 12 Tuesday, April 12, 2022 3:20 PM

Contents 13

11.9 Case Study: Transaction-Processing System 614
11.10 Secure C Programming 620

AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 630
AI/Data-Science Case Study—Machine Learning with GNU
Scientific Library 636
AI/Data-Science Case Study: Time Series and Simple
Linear Regression 642
Web Services and the Cloud Case Study—libcurl and
OpenWeatherMap 643

12 Data Structures 649
12.1 Introduction 650
12.2 Self-Referential Structures 651
12.3 Dynamic Memory Management 652
12.4 Linked Lists 653

12.4.1 Function insert 657
12.4.2 Function delete 659
12.4.3 Functions isEmpty and printList 661

12.5 Stacks 662
12.5.1 Function push 666
12.5.2 Function pop 667
12.5.3 Applications of Stacks 667

12.6 Queues 668
12.6.1 Function enqueue 673
12.6.2 Function dequeue 674

12.7 Trees 675
12.7.1 Function insertNode 678
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 679
12.7.3 Duplicate Elimination 680
12.7.4 Binary Tree Search 680
12.7.5 Other Binary Tree Operations 680

12.8 Secure C Programming 681
Special Section: Systems Software Case Study—Building Your
Own Compiler 690

13 Computer-Science Thinking: Sorting Algorithms
and Big O 711

13.1 Introduction 712
13.2 Efficiency of Algorithms: Big O 713

13.2.1 O(1) Algorithms 713
13.2.2 O(n) Algorithms 713
13.2.3 O(n2) Algorithms 713

DEIT8393_09_GE_Final.book Page 13 Tuesday, April 12, 2022 3:20 PM

14 Contents

13.3 Selection Sort 714
13.3.1 Selection Sort Implementation 715
13.3.2 Efficiency of Selection Sort 718

13.4 Insertion Sort 719
13.4.1 Insertion Sort Implementation 719
13.4.2 Efficiency of Insertion Sort 722

13.5 Case Study: Visualizing the High-Performance Merge Sort 722
13.5.1 Merge Sort Implementation 723
13.5.2 Efficiency of Merge Sort 727
13.5.3 Summarizing Various Algorithms’ Big O Notations 728

14 Preprocessor 735
14.1 Introduction 736
14.2 #include Preprocessor Directive 737
14.3 #define Preprocessor Directive: Symbolic Constants 737
14.4 #define Preprocessor Directive: Macros 738

14.4.1 Macro with One Argument 739
14.4.2 Macro with Two Arguments 740
14.4.3 Macro Continuation Character 740
14.4.4 #undef Preprocessor Directive 740
14.4.5 Standard-Library Macros 740
14.4.6 Do Not Place Expressions with Side Effects in Macros 741

14.5 Conditional Compilation 741
14.5.1 #if…#endif Preprocessor Directive 741
14.5.2 Commenting Out Blocks of Code with #if…#endif 742

14.5.3 Conditionally Compiling Debug Code 742
14.6 #error and #pragma Preprocessor Directives 743
14.7 # and ## Operators 744
14.8 Line Numbers 744
14.9 Predefined Symbolic Constants 745
14.10 Assertions 745
14.11 Secure C Programming 746

15 Other Topics 753
15.1 Introduction 754
15.2 Variable-Length Argument Lists 754
15.3 Using Command-Line Arguments 756
15.4 Compiling Multiple-Source-File Programs 758

15.4.1 extern Declarations for Global Variables in Other Files 758
15.4.2 Function Prototypes 759
15.4.3 Restricting Scope with static 759

15.5 Program Termination with exit and atexit 760

DEIT8393_09_GE_Final.book Page 14 Tuesday, April 12, 2022 3:20 PM

Contents 15

15.6 Suffixes for Integer and Floating-Point Literals 762
15.7 Signal Handling 762
15.8 Dynamic Memory Allocation Functions calloc and realloc 765
15.9 goto: Unconditional Branching 767

A Operator Precedence Chart 773

B ASCII Character Set 775

C Multithreading/Multicore and
Other C18/C11/C99 Topics 777

C.1 Introduction 778
C.2 Headers Added in C99 779
C.3 Designated Initializers and Compound Literals 779
C.4 Type bool 781
C.5 Complex Numbers 782
C.6 Macros with Variable-Length Argument Lists 784
C.7 Other C99 Features 784

C.7.1 Compiler Minimum Resource Limits 784
C.7.2 The restrict Keyword 784
C.7.3 Reliable Integer Division 785
C.7.4 Flexible Array Members 785
C.7.5 Type-Generic Math 786
C.7.6 Inline Functions 786
C.7.7 __func__ Predefined Identifier 786
C.7.8 va_copy Macro 787

C.8 C11/C18 Features 787
C.8.1 C11/C18 Headers 787
C.8.2 quick_exit Function 787
C.8.3 Unicode® Support 787
C.8.4 _Noreturn Function Specifier 788
C.8.5 Type-Generic Expressions 788
C.8.6 Annex L: Analyzability and Undefined Behavior 788
C.8.7 Memory Alignment Control 789
C.8.8 Static Assertions 789
C.8.9 Floating-Point Types 789

C.9 Case Study: Performance with Multithreading and Multicore Systems 790
C.9.1 Example: Sequential Execution of Two

Compute-Intensive Tasks 793
C.9.2 Example: Multithreaded Execution of Two

Compute-Intensive Tasks 795
C.9.3 Other Multithreading Features 799

DEIT8393_09_GE_Final.book Page 15 Tuesday, April 12, 2022 3:20 PM

16 Contents

D Intro to Object-Oriented Programming Concepts 801
D.1 Introduction 801
D.2 Object-Oriented Programming Languages 801
D.3 Automobile as an Object 802
D.4 Methods and Classes 802
D.5 Instantiation 802
D.6 Reuse 802
D.7 Messages and Method Calls 803
D.8 Attributes and Instance Variables 803
D.9 Inheritance 803
D.10 Object-Oriented Analysis and Design (OOAD) 804

Index 805

Online Appendices
E Number Systems

F Using the Visual Studio Debugger

G Using the GNU gdb Debugger

H Using the Xcode Debugger

DEIT8393_09_GE_Final.book Page 16 Tuesday, April 12, 2022 3:20 PM

