
Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President, Editorial Director: Marcia Horton
Acquisitions Editor: Tracy Johnson
Editorial Assistant: Kristy Alaura
Acquisitions Editor, Global Editions: Sourabh Maheshwari
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram Van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project Management: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Project Editor, Global Editions: K.K. Neelakantan
Senior Manufacturing Controller, Global Editions: Trudy Kimber
Senior Specialist, Program Planning and Support: Maura Zaldivar-Garcia
Media Production Manager, Global Editions: Vikram Kumar
Cover Art: Finevector / Shutterstock
Cover Design: Lumina Datamatics
R&P Manager: Rachel Youdelman
R&P Project Manager: Timothy Nicholls
Inventory Manager: Meredith Maresca

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page 6.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2017

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled C++ How to Program,10th Edition, ISBN
9780134448237, by Paul Deitel and Harvey Deitel published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-15334-2

ISBN 13: 978-1-292-15334-6

Typeset by GEX Publishing Services

Printed and bound in Malaysia

In memory of Marvin Minsky,
a founding father of the
field of artificial intelligence.

It was a privilege to be your student in two graduate
courses at M.I.T. Every lecture you gave inspired
your students to think beyond limits.

Harvey Deitel

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Carnegie Mellon Software Engineering Institute™ is a trademark of Carnegie Mellon University.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

UNIX is a registered trademark of The Open Group.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 23–26 and Appendices F–J are PDF documents posted online at the book’s
Companion Website, which is accessible from

See the inside front cover for more information.

Preface 23

Before You Begin 39

1 Introduction to Computers and C++ 41
1.1 Introduction 42
1.2 Computers and the Internet in Industry and Research 43
1.3 Hardware and Software 45

1.3.1 Moore’s Law 45
1.3.2 Computer Organization 46

1.4 Data Hierarchy 47
1.5 Machine Languages, Assembly Languages and High-Level Languages 50
1.6 C and C++ 51
1.7 Programming Languages 52
1.8 Introduction to Object Technology 54
1.9 Typical C++ Development Environment 57
1.10 Test-Driving a C++ Application 60

1.10.1 Compiling and Running an Application in Visual Studio 2015
for Windows 60

1.10.2 Compiling and Running Using GNU C++ on Linux 65
1.10.3 Compiling and Running with Xcode on Mac OS X 67

1.11 Operating Systems 72
1.11.1 Windows—A Proprietary Operating System 72
1.11.2 Linux—An Open-Source Operating System 72
1.11.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch®

Devices 73
1.11.4 Google’s Android 73

1.12 The Internet and the World Wide Web 74
1.13 Some Key Software Development Terminology 76
1.14 C++11 and C++14: The Latest C++ Versions 78

http://www.pearsonglobaleditions.com/deitel

Contents

8 Contents

1.15 Boost C++ Libraries 79
1.16 Keeping Up to Date with Information Technologies 79

2 Introduction to C++ Programming,
Input/Output and Operators 84

2.1 Introduction 85
2.2 First Program in C++: Printing a Line of Text 85
2.3 Modifying Our First C++ Program 89
2.4 Another C++ Program: Adding Integers 90
2.5 Memory Concepts 94
2.6 Arithmetic 95
2.7 Decision Making: Equality and Relational Operators 99
2.8 Wrap-Up 103

3 Introduction to Classes, Objects,
Member Functions and Strings 113

3.1 Introduction 114
3.2 Test-Driving an Account Object 115

3.2.1 Instantiating an Object 115
3.2.2 Headers and Source-Code Files 116
3.2.3 Calling Class Account’s getName Member Function 116
3.2.4 Inputting a string with getline 117
3.2.5 Calling Class Account’s setName Member Function 117

3.3 Account Class with a Data Member and Set and Get Member Functions 118
3.3.1 Account Class Definition 118
3.3.2 Keyword class and the Class Body 119
3.3.3 Data Member name of Type string 119
3.3.4 setName Member Function 120
3.3.5 getName Member Function 122
3.3.6 Access Specifiers private and public 122
3.3.7 Account UML Class Diagram 123

3.4 Account Class: Initializing Objects with Constructors 124
3.4.1 Defining an Account Constructor for Custom Object Initialization 125
3.4.2 Initializing Account Objects When They’re Created 126
3.4.3 Account UML Class Diagram with a Constructor 128

3.5 Software Engineering with Set and Get Member Functions 128
3.6 Account Class with a Balance; Data Validation 129

3.6.1 Data Member balance 129
3.6.2 Two-Parameter Constructor with Validation 131
3.6.3 deposit Member Function with Validation 131
3.6.4 getBalance Member Function 131
3.6.5 Manipulating Account Objects with Balances 132
3.6.6 Account UML Class Diagram with a Balance and Member

Functions deposit and getBalance 134
3.7 Wrap-Up 134

Contents 9

4 Algorithm Development and
Control Statements: Part 1 143

4.1 Introduction 144
4.2 Algorithms 145
4.3 Pseudocode 145
4.4 Control Structures 146

4.4.1 Sequence Structure 146
4.4.2 Selection Statements 148
4.4.3 Iteration Statements 148
4.4.4 Summary of Control Statements 149

4.5 if Single-Selection Statement 149
4.6 if…else Double-Selection Statement 150

4.6.1 Nested if…else Statements 151
4.6.2 Dangling-else Problem 153
4.6.3 Blocks 153
4.6.4 Conditional Operator (?:) 154

4.7 Student Class: Nested if…else Statements 155
4.8 while Iteration Statement 157
4.9 Formulating Algorithms: Counter-Controlled Iteration 159

4.9.1 Pseudocode Algorithm with Counter-Controlled Iteration 159
4.9.2 Implementing Counter-Controlled Iteration 160
4.9.3 Notes on Integer Division and Truncation 162
4.9.4 Arithmetic Overflow 162
4.9.5 Input Validation 163

4.10 Formulating Algorithms: Sentinel-Controlled Iteration 163
4.10.1 Top-Down, Stepwise Refinement: The Top and First Refinement 164
4.10.2 Proceeding to the Second Refinement 164
4.10.3 Implementing Sentinel-Controlled Iteration 166
4.10.4 Converting Between Fundamental Types Explicitly and Implicitly 169
4.10.5 Formatting Floating-Point Numbers 170
4.10.6 Unsigned Integers and User Input 170

4.11 Formulating Algorithms: Nested Control Statements 171
4.11.1 Problem Statement 171
4.11.2 Top-Down, Stepwise Refinement: Pseudocode Representation

of the Top 172
4.11.3 Top-Down, Stepwise Refinement: First Refinement 172
4.11.4 Top-Down, Stepwise Refinement: Second Refinement 172
4.11.5 Complete Second Refinement of the Pseudocode 173
4.11.6 Program That Implements the Pseudocode Algorithm 174
4.11.7 Preventing Narrowing Conversions with List Initialization 175

4.12 Compound Assignment Operators 176
4.13 Increment and Decrement Operators 177
4.14 Fundamental Types Are Not Portable 180
4.15 Wrap-Up 180

10 Contents

5 Control Statements: Part 2; Logical Operators 199
5.1 Introduction 200
5.2 Essentials of Counter-Controlled Iteration 200
5.3 for Iteration Statement 201
5.4 Examples Using the for Statement 205
5.5 Application: Summing Even Integers 206
5.6 Application: Compound-Interest Calculations 207
5.7 Case Study: Integer-Based Monetary Calculations with

Class DollarAmount 211
5.7.1 Demonstrating Class DollarAmount 212
5.7.2 Class DollarAmount 215

5.8 do…while Iteration Statement 219
5.9 switch Multiple-Selection Statement 220
5.10 break and continue Statements 226

5.10.1 break Statement 226
5.10.2 continue Statement 227

5.11 Logical Operators 228
5.11.1 Logical AND (&&) Operator 228
5.11.2 Logical OR (||) Operator 229
5.11.3 Short-Circuit Evaluation 230
5.11.4 Logical Negation (!) Operator 230
5.11.5 Logical Operators Example 231

5.12 Confusing the Equality (==) and Assignment (=) Operators 232
5.13 Structured-Programming Summary 234
5.14 Wrap-Up 239

6 Functions and an Introduction to Recursion 251
6.1 Introduction 252
6.2 Program Components in C++ 253
6.3 Math Library Functions 254
6.4 Function Prototypes 255
6.5 Function-Prototype and Argument-Coercion Notes 258

6.5.1 Function Signatures and Function Prototypes 259
6.5.2 Argument Coercion 259
6.5.3 Argument-Promotion Rules and Implicit Conversions 259

6.6 C++ Standard Library Headers 260
6.7 Case Study: Random-Number Generation 262

6.7.1 Rolling a Six-Sided Die 263
6.7.2 Rolling a Six-Sided Die 60,000,000 Times 264
6.7.3 Randomizing the Random-Number Generator with srand 265
6.7.4 Seeding the Random-Number Generator with the Current Time 267
6.7.5 Scaling and Shifting Random Numbers 267

6.8 Case Study: Game of Chance; Introducing Scoped enums 268
6.9 C++11 Random Numbers 272
6.10 Scope Rules 273

Contents 11

6.11 Function-Call Stack and Activation Records 277
6.12 Inline Functions 281
6.13 References and Reference Parameters 282
6.14 Default Arguments 285
6.15 Unary Scope Resolution Operator 287
6.16 Function Overloading 288
6.17 Function Templates 291
6.18 Recursion 294
6.19 Example Using Recursion: Fibonacci Series 297
6.20 Recursion vs. Iteration 300
6.21 Wrap-Up 303

7 Class Templates array and vector;
Catching Exceptions 323

7.1 Introduction 324
7.2 arrays 324
7.3 Declaring arrays 326
7.4 Examples Using arrays 326

7.4.1 Declaring an array and Using a Loop to Initialize the array’s
Elements 327

7.4.2 Initializing an array in a Declaration with an Initializer List 328
7.4.3 Specifying an array’s Size with a Constant Variable and Setting

array Elements with Calculations 329
7.4.4 Summing the Elements of an array 330
7.4.5 Using a Bar Chart to Display array Data Graphically 331
7.4.6 Using the Elements of an array as Counters 332
7.4.7 Using arrays to Summarize Survey Results 333
7.4.8 Static Local arrays and Automatic Local arrays 336

7.5 Range-Based for Statement 338
7.6 Case Study: Class GradeBook Using an array to Store Grades 340
7.7 Sorting and Searching arrays 346

7.7.1 Sorting 346
7.7.2 Searching 346
7.7.3 Demonstrating Functions sort and binary_search 346

7.8 Multidimensional arrays 347
7.9 Case Study: Class GradeBook Using a Two-Dimensional array 351
7.10 Introduction to C++ Standard Library Class Template vector 357
7.11 Wrap-Up 363

8 Pointers 379
8.1 Introduction 380
8.2 Pointer Variable Declarations and Initialization 381

8.2.1 Declaring Pointers 381
8.2.2 Initializing Pointers 382
8.2.3 Null Pointers Prior to C++11 382

12 Contents

8.3 Pointer Operators 382
8.3.1 Address (&) Operator 382
8.3.2 Indirection (*) Operator 383
8.3.3 Using the Address (&) and Indirection (*) Operators 384

8.4 Pass-by-Reference with Pointers 385
8.5 Built-In Arrays 389

8.5.1 Declaring and Accessing a Built-In Array 389
8.5.2 Initializing Built-In Arrays 390
8.5.3 Passing Built-In Arrays to Functions 390
8.5.4 Declaring Built-In Array Parameters 391
8.5.5 C++11: Standard Library Functions begin and end 391
8.5.6 Built-In Array Limitations 391
8.5.7 Built-In Arrays Sometimes Are Required 392

8.6 Using const with Pointers 392
8.6.1 Nonconstant Pointer to Nonconstant Data 393
8.6.2 Nonconstant Pointer to Constant Data 393
8.6.3 Constant Pointer to Nonconstant Data 394
8.6.4 Constant Pointer to Constant Data 395

8.7 sizeof Operator 396
8.8 Pointer Expressions and Pointer Arithmetic 398

8.8.1 Adding Integers to and Subtracting Integers from Pointers 399
8.8.2 Subtracting Pointers 400
8.8.3 Pointer Assignment 401
8.8.4 Cannot Dereference a void* 401
8.8.5 Comparing Pointers 401

8.9 Relationship Between Pointers and Built-In Arrays 401
8.9.1 Pointer/Offset Notation 402
8.9.2 Pointer/Offset Notation with the Built-In Array’s Name

as the Pointer 402
8.9.3 Pointer/Subscript Notation 402
8.9.4 Demonstrating the Relationship Between Pointers and

Built-In Arrays 403
8.10 Pointer-Based Strings (Optional) 404
8.11 Note About Smart Pointers 407
8.12 Wrap-Up 407

9 Classes: A Deeper Look 425
9.1 Introduction 426
9.2 Time Class Case Study: Separating Interface from Implementation 427

9.2.1 Interface of a Class 428
9.2.2 Separating the Interface from the Implementation 428
9.2.3 Time Class Definition 428
9.2.4 Time Class Member Functions 430
9.2.5 Scope Resolution Operator (::) 431
9.2.6 Including the Class Header in the Source-Code File 431

Contents 13

9.2.7 Time Class Member Function setTime and Throwing Exceptions 432
9.2.8 Time Class Member Function toUniversalString and

String Stream Processing 432
9.2.9 Time Class Member Function toStandardString 433
9.2.10 Implicitly Inlining Member Functions 433
9.2.11 Member Functions vs. Global Functions 433
9.2.12 Using Class Time 434
9.2.13 Object Size 436

9.3 Compilation and Linking Process 436
9.4 Class Scope and Accessing Class Members 438
9.5 Access Functions and Utility Functions 439
9.6 Time Class Case Study: Constructors with Default Arguments 439

9.6.1 Constructors with Default Arguments 439
9.6.2 Overloaded Constructors and C++11 Delegating Constructors 444

9.7 Destructors 445
9.8 When Constructors and Destructors Are Called 445

9.8.1 Constructors and Destructors for Objects in Global Scope 446
9.8.2 Constructors and Destructors for Non-static Local Objects 446
9.8.3 Constructors and Destructors for static Local Objects 446
9.8.4 Demonstrating When Constructors and Destructors Are Called 446

9.9 Time Class Case Study: A Subtle Trap—Returning a Reference or a
Pointer to a private Data Member 449

9.10 Default Memberwise Assignment 451
9.11 const Objects and const Member Functions 453
9.12 Composition: Objects as Members of Classes 455
9.13 friend Functions and friend Classes 461
9.14 Using the this Pointer 463

9.14.1 Implicitly and Explicitly Using the this Pointer to Access an
Object’s Data Members 464

9.14.2 Using the this Pointer to Enable Cascaded Function Calls 465
9.15 static Class Members 469

9.15.1 Motivating Classwide Data 469
9.15.2 Scope and Initialization of static Data Members 469
9.15.3 Accessing static Data Members 470
9.15.4 Demonstrating static Data Members 470

9.16 Wrap-Up 473

10 Operator Overloading; Class string 487
10.1 Introduction 488
10.2 Using the Overloaded Operators of Standard Library Class string 489
10.3 Fundamentals of Operator Overloading 493

10.3.1 Operator Overloading Is Not Automatic 493
10.3.2 Operators That You Do Not Have to Overload 493
10.3.3 Operators That Cannot Be Overloaded 494
10.3.4 Rules and Restrictions on Operator Overloading 494

14 Contents

10.4 Overloading Binary Operators 495
10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 495
10.6 Overloading Unary Operators 499
10.7 Overloading the Increment and Decrement Operators 500
10.8 Case Study: A Date Class 501
10.9 Dynamic Memory Management 506
10.10 Case Study: Array Class 508

10.10.1 Using the Array Class 509
10.10.2 Array Class Definition 513

10.11 Operators as Member vs. Non-Member Functions 520
10.12 Converting Between Types 521
10.13 explicit Constructors and Conversion Operators 522
10.14 Overloading the Function Call Operator () 525
10.15 Wrap-Up 525

11 Object-Oriented Programming: Inheritance 537
11.1 Introduction 538
11.2 Base Classes and Derived Classes 539

11.2.1 CommunityMember Class Hierarchy 539
11.2.2 Shape Class Hierarchy 540

11.3 Relationship between Base and Derived Classes 541
11.3.1 Creating and Using a CommissionEmployee Class 541
11.3.2 Creating a BasePlusCommissionEmployee Class Without

Using Inheritance 546
11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 551
11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Data 555
11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Data 559
11.4 Constructors and Destructors in Derived Classes 563
11.5 public, protected and private Inheritance 565
11.6 Wrap-Up 566

12 Object-Oriented Programming: Polymorphism 571
12.1 Introduction 572
12.2 Introduction to Polymorphism: Polymorphic Video Game 573
12.3 Relationships Among Objects in an Inheritance Hierarchy 574

12.3.1 Invoking Base-Class Functions from Derived-Class Objects 574
12.3.2 Aiming Derived-Class Pointers at Base-Class Objects 577
12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 578

12.4 Virtual Functions and Virtual Destructors 580
12.4.1 Why virtual Functions Are Useful 580
12.4.2 Declaring virtual Functions 580

Contents 15

12.4.3 Invoking a virtual Function Through a Base-Class Pointer
or Reference 581

12.4.4 Invoking a virtual Function Through an Object’s Name 581
12.4.5 virtual Functions in the CommissionEmployee Hierarchy 581
12.4.6 virtual Destructors 586
12.4.7 C++11: final Member Functions and Classes 586

12.5 Type Fields and switch Statements 587
12.6 Abstract Classes and Pure virtual Functions 587

12.6.1 Pure virtual Functions 588
12.6.2 Device Drivers: Polymorphism in Operating Systems 589

12.7 Case Study: Payroll System Using Polymorphism 589
12.7.1 Creating Abstract Base Class Employee 590
12.7.2 Creating Concrete Derived Class SalariedEmployee 593
12.7.3 Creating Concrete Derived Class CommissionEmployee 596
12.7.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 598
12.7.5 Demonstrating Polymorphic Processing 600

12.8 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 603

12.9 Case Study: Payroll System Using Polymorphism and Runtime Type
Information with Downcasting, dynamic_cast, typeid and type_info 607

12.10 Wrap-Up 610

13 Stream Input/Output: A Deeper Look 617
13.1 Introduction 618
13.2 Streams 619

13.2.1 Classic Streams vs. Standard Streams 619
13.2.2 iostream Library Headers 620
13.2.3 Stream Input/Output Classes and Objects 620

13.3 Stream Output 621
13.3.1 Output of char* Variables 621
13.3.2 Character Output Using Member Function put 622

13.4 Stream Input 622
13.4.1 get and getline Member Functions 623
13.4.2 istream Member Functions peek, putback and ignore 626
13.4.3 Type-Safe I/O 626

13.5 Unformatted I/O Using read, write and gcount 626
13.6 Stream Manipulators: A Deeper Look 627

13.6.1 Integral Stream Base: dec, oct, hex and setbase 628
13.6.2 Floating-Point Precision (precision, setprecision) 628
13.6.3 Field Width (width, setw) 630
13.6.4 User-Defined Output Stream Manipulators 631

13.7 Stream Format States and Stream Manipulators 632
13.7.1 Trailing Zeros and Decimal Points (showpoint) 633
13.7.2 Justification (left, right and internal) 634

16 Contents

13.7.3 Padding (fill, setfill) 635
13.7.4 Integral Stream Base (dec, oct, hex, showbase) 637
13.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 637
13.7.6 Uppercase/Lowercase Control (uppercase) 638
13.7.7 Specifying Boolean Format (boolalpha) 639
13.7.8 Setting and Resetting the Format State via Member

Function flags 640
13.8 Stream Error States 641
13.9 Tying an Output Stream to an Input Stream 644
13.10 Wrap-Up 645

14 File Processing 655
14.1 Introduction 656
14.2 Files and Streams 656
14.3 Creating a Sequential File 657

14.3.1 Opening a File 658
14.3.2 Opening a File via the open Member Function 659
14.3.3 Testing Whether a File Was Opened Successfully 659
14.3.4 Overloaded bool Operator 660
14.3.5 Processing Data 660
14.3.6 Closing a File 660
14.3.7 Sample Execution 661

14.4 Reading Data from a Sequential File 661
14.4.1 Opening a File for Input 662
14.4.2 Reading from the File 662
14.4.3 File-Position Pointers 662
14.4.4 Case Study: Credit Inquiry Program 663

14.5 C++14: Reading and Writing Quoted Text 666
14.6 Updating Sequential Files 667
14.7 Random-Access Files 668
14.8 Creating a Random-Access File 669

14.8.1 Writing Bytes with ostream Member Function write 669
14.8.2 Converting Between Pointer Types with the

reinterpret_cast Operator 669
14.8.3 Credit-Processing Program 670
14.8.4 Opening a File for Output in Binary Mode 673

14.9 Writing Data Randomly to a Random-Access File 673
14.9.1 Opening a File for Input and Output in Binary Mode 675
14.9.2 Positioning the File-Position Pointer 675

14.10 Reading from a Random-Access File Sequentially 675
14.11 Case Study: A Transaction-Processing Program 677
14.12 Object Serialization 683
14.13 Wrap-Up 684

Contents 17

15 Standard Library Containers and Iterators 695
15.1 Introduction 696
15.2 Introduction to Containers 698
15.3 Introduction to Iterators 702
15.4 Introduction to Algorithms 707
15.5 Sequence Containers 707

15.5.1 vector Sequence Container 708
15.5.2 list Sequence Container 715
15.5.3 deque Sequence Container 720

15.6 Associative Containers 721
15.6.1 multiset Associative Container 722
15.6.2 set Associative Container 725
15.6.3 multimap Associative Container 727
15.6.4 map Associative Container 729

15.7 Container Adapters 730
15.7.1 stack Adapter 731
15.7.2 queue Adapter 733
15.7.3 priority_queue Adapter 734

15.8 Class bitset 735
15.9 Wrap-Up 737

16 Standard Library Algorithms 747
16.1 Introduction 748
16.2 Minimum Iterator Requirements 748
16.3 Lambda Expressions 750

16.3.1 Algorithm for_each 751
16.3.2 Lambda with an Empty Introducer 751
16.3.3 Lambda with a Nonempty Introducer—Capturing Local Variables 752
16.3.4 Lambda Return Types 752

16.4 Algorithms 752
16.4.1 fill, fill_n, generate and generate_n 752
16.4.2 equal, mismatch and lexicographical_compare 755
16.4.3 remove, remove_if, remove_copy and remove_copy_if 758
16.4.4 replace, replace_if, replace_copy and replace_copy_if 761
16.4.5 Mathematical Algorithms 763
16.4.6 Basic Searching and Sorting Algorithms 766
16.4.7 swap, iter_swap and swap_ranges 771
16.4.8 copy_backward, merge, unique and reverse 772
16.4.9 inplace_merge, unique_copy and reverse_copy 775
16.4.10 Set Operations 777
16.4.11 lower_bound, upper_bound and equal_range 780
16.4.12 min, max, minmax and minmax_element 782

16.5 Function Objects 784
16.6 Standard Library Algorithm Summary 787
16.7 Wrap-Up 789

18 Contents

17 Exception Handling: A Deeper Look 797
17.1 Introduction 798
17.2 Exception-Handling Flow of Control; Defining an Exception Class 799

17.2.1 Defining an Exception Class to Represent the Type of Problem
That Might Occur 799

17.2.2 Demonstrating Exception Handling 800
17.2.3 Enclosing Code in a try Block 801
17.2.4 Defining a catch Handler to Process a DivideByZeroException 802
17.2.5 Termination Model of Exception Handling 802
17.2.6 Flow of Program Control When the User Enters a Nonzero

Denominator 803
17.2.7 Flow of Program Control When the User Enters a Denominator

of Zero 803
17.3 Rethrowing an Exception 804
17.4 Stack Unwinding 806
17.5 When to Use Exception Handling 807
17.6 noexcept: Declaring Functions That Do Not Throw Exceptions 808
17.7 Constructors, Destructors and Exception Handling 808

17.7.1 Destructors Called Due to Exceptions 808
17.7.2 Initializing Local Objects to Acquire Resources 809

17.8 Processing new Failures 809
17.8.1 new Throwing bad_alloc on Failure 809
17.8.2 new Returning nullptr on Failure 810
17.8.3 Handling new Failures Using Function set_new_handler 811

17.9 Class unique_ptr and Dynamic Memory Allocation 812
17.9.1 unique_ptr Ownership 814
17.9.2 unique_ptr to a Built-In Array 815

17.10 Standard Library Exception Hierarchy 815
17.11 Wrap-Up 817

18 Introduction to Custom Templates 823
18.1 Introduction 824
18.2 Class Templates 825

18.2.1 Creating Class Template Stack<T> 826

18.2.2 Class Template Stack<T>’s Data Representation 827
18.2.3 Class Template Stack<T>’s Member Functions 827
18.2.4 Declaring a Class Template’s Member Functions Outside the

Class Template Definition 828
18.2.5 Testing Class Template Stack<T> 828

18.3 Function Template to Manipulate a Class-Template Specialization Object 830
18.4 Nontype Parameters 832
18.5 Default Arguments for Template Type Parameters 832
18.6 Overloading Function Templates 833
18.7 Wrap-Up 833

Contents 19

19 Custom Templatized Data Structures 837
19.1 Introduction 838

19.1.1 Always Prefer the Standard Library’s Containers, Iterators
and Algorithms, if Possible 839

19.1.2 Special Section: Building Your Own Compiler 839
19.2 Self-Referential Classes 839
19.3 Linked Lists 840

19.3.1 Testing Our Linked List Implementation 842
19.3.2 Class Template ListNode 845
19.3.3 Class Template List 846
19.3.4 Member Function insertAtFront 849
19.3.5 Member Function insertAtBack 850
19.3.6 Member Function removeFromFront 850
19.3.7 Member Function removeFromBack 851
19.3.8 Member Function print 852
19.3.9 Circular Linked Lists and Double Linked Lists 853

19.4 Stacks 854
19.4.1 Taking Advantage of the Relationship Between Stack and List 855
19.4.2 Implementing a Class Template Stack Class Based By Inheriting

from List 855
19.4.3 Dependent Names in Class Templates 856
19.4.4 Testing the Stack Class Template 857
19.4.5 Implementing a Class Template Stack Class With Composition

of a List Object 858
19.5 Queues 859

19.5.1 Applications of Queues 859
19.5.2 Implementing a Class Template Queue Class Based By

Inheriting from List 860
19.5.3 Testing the Queue Class Template 861

19.6 Trees 863
19.6.1 Basic Terminology 863
19.6.2 Binary Search Trees 864
19.6.3 Testing the Tree Class Template 864
19.6.4 Class Template TreeNode 866
19.6.5 Class Template Tree 867
19.6.6 Tree Member Function insertNodeHelper 869
19.6.7 Tree Traversal Functions 869
19.6.8 Duplicate Elimination 870
19.6.9 Overview of the Binary Tree Exercises 870

19.7 Wrap-Up 871

20 Searching and Sorting 881
20.1 Introduction 882
20.2 Searching Algorithms 883

20.2.1 Linear Search 883

20 Contents

20.2.2 Binary Search 886
20.3 Sorting Algorithms 890

20.3.1 Insertion Sort 891
20.3.2 Selection Sort 893
20.3.3 Merge Sort (A Recursive Implementation) 895

20.4 Wrap-Up 902

21 Class string and String Stream Processing:
A Deeper Look 909

21.1 Introduction 910
21.2 string Assignment and Concatenation 911
21.3 Comparing strings 913
21.4 Substrings 916
21.5 Swapping strings 916
21.6 string Characteristics 917
21.7 Finding Substrings and Characters in a string 920
21.8 Replacing Characters in a string 921
21.9 Inserting Characters into a string 923
21.10 Conversion to Pointer-Based char* Strings 924
21.11 Iterators 926
21.12 String Stream Processing 927
21.13 C++11 Numeric Conversion Functions 930
21.14 Wrap-Up 932

22 Bits, Characters, C Strings and structs 939
22.1 Introduction 940
22.2 Structure Definitions 940
22.3 typedef and using 942
22.4 Example: Card Shuffling and Dealing Simulation 942
22.5 Bitwise Operators 945
22.6 Bit Fields 954
22.7 Character-Handling Library 958
22.8 C String-Manipulation Functions 963
22.9 C String-Conversion Functions 970
22.10 Search Functions of the C String-Handling Library 975
22.11 Memory Functions of the C String-Handling Library 979
22.12 Wrap-Up 983

Chapters on the Web 999

A Operator Precedence and Associativity 1001

B ASCII Character Set 1003

Contents 21

C Fundamental Types 1005

D Number Systems 1007
D.1 Introduction 1008
D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 1011
D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 1012
D.4 Converting from Binary, Octal or Hexadecimal to Decimal 1012
D.5 Converting from Decimal to Binary, Octal or Hexadecimal 1013
D.6 Negative Binary Numbers: Two’s Complement Notation 1015

E Preprocessor 1021
E.1 Introduction 1022
E.2 #include Preprocessing Directive 1022
E.3 #define Preprocessing Directive: Symbolic Constants 1023
E.4 #define Preprocessing Directive: Macros 1023
E.5 Conditional Compilation 1025
E.6 #error and #pragma Preprocessing Directives 1027
E.7 Operators # and ## 1027
E.8 Predefined Symbolic Constants 1027
E.9 Assertions 1028
E.10 Wrap-Up 1028

Appendices on the Web 1033

Index 1035

Chapters 23–26 and Appendices F–J are PDF documents posted online at the book’s
Companion Website, which is accessible from

See the inside front cover for more information.

23 Other Topics

24 C++11 and C++14: Additional Features

25 ATM Case Study, Part 1: Object-Oriented
Design with the UM

26 ATM Case Study, Part 2: Implementing an
Object-Oriented Design

http://www.pearsonglobaleditions.com/deitel

22 Contents

F C Legacy Code Topics

G UML: Additional Diagram Types

H Using the Visual Studio Debugger

I Using the GNU C++ Debugger

J Using the Xcode Debugger

