
Clean Architecture
A Craftsman’s Guide to Software

Structure and Design

Robert C. Martin

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2017945537

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-449416-6
ISBN-10: 0-13-449416-4

1 17

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

This book is dedicated to my lovely wife, my four spectacular children,
and their families, including my quiver full of five grandchildren—who

are the dessert of my life.

This page intentionally left blank

vii

Foreword xv

Preface xix

Acknowledgments xxiii

About the Author xxv

PART I Introduction 1

Chapter 1 What Is Design and Architecture? 3

The Goal? 4
Case Study 5
Conclusion 12

Chapter 2 A Tale of Two Values 13

Behavior 14
Architecture 14
The Greater Value 15
Eisenhower’s Matrix 16
Fight for the Architecture 18

Contents

Contents

viii

PART II Starting with the Bricks: Programming Paradigms 19

Chapter 3 Paradigm Overview 21

Structured Programming 22
Object-Oriented Programming 22
Functional Programming 22
Food for Thought 23
Conclusion 24

Chapter 4 Structured Programming 25

Proof 27
A Harmful Proclamation 28
Functional Decomposition 29
No Formal Proofs 30
Science to the Rescue 30
Tests 31
Conclusion 31

Chapter 5 Object-Oriented Programming 33

Encapsulation? 34
Inheritance? 37
Polymorphism? 40
Conclusion 47

Chapter 6 Functional Programming 49

Squares of Integers 50
Immutability and Architecture 52
Segregation of Mutability 52
Event Sourcing 54
Conclusion 56

PART III Design Principles 57

Chapter 7 SRP: The Single Responsibility Principle 61

Symptom 1: Accidental Duplication 63
Symptom 2: Merges 65
Solutions 66
Conclusion 67

Contents

ix

Chapter 8 OCP: The Open-Closed Principle 69

A Thought Experiment 70
Directional Control 74
Information Hiding 74
Conclusion 75

Chapter 9 LSP: The Liskov Substitution Principle 77

Guiding the Use of Inheritance 78
The Square/Rectangle Problem 79
LSP and Architecture 80
Example LSP Violation 80
Conclusion 82

Chapter 10 ISP: The Interface Segregation Principle 83

ISP and Language 85
ISP and Architecture 86
Conclusion 86

Chapter 11 DIP: The Dependency Inversion Principle 87

Stable Abstractions 88
Factories 89
Concrete Components 91
Conclusion 91

PART IV Component Principles 93

Chapter 12 Components 95

A Brief History of Components 96
Relocatability 99
Linkers 100
Conclusion 102

Chapter 13 Component Cohesion 103

The Reuse/Release Equivalence Principle 104
The Common Closure Principle 105
The Common Reuse Principle 107
The Tension Diagram for Component Cohesion 108
Conclusion 110

Contents

x

Chapter 14 Component Coupling 111

The Acyclic Dependencies Principle 112
Top-Down Design 118
The Stable Dependencies Principle 120
The Stable Abstractions Principle 126
Conclusion 132

PART V Architecture 133

Chapter 15 What Is Architecture? 135

Development 137
Deployment 138
Operation 138
Maintenance 139
Keeping Options Open 140
Device Independence 142
Junk Mail 144
Physical Addressing 145
Conclusion 146

Chapter 16 Independence 147

Use Cases 148
Operation 149
Development 149
Deployment 150
Leaving Options Open 150
Decoupling Layers 151
Decoupling Use Cases 152
Decoupling Mode 153
Independent Develop-ability 153
Independent Deployability 154
Duplication 154
Decoupling Modes (Again) 155
Conclusion 158

Contents

xi

Chapter 17 Boundaries: Drawing Lines 159

A Couple of Sad Stories 160
FitNesse 163
Which Lines Do You Draw, and When Do You Draw Them? 165
What About Input and Output? 169
Plugin Architecture 170
The Plugin Argument 172
Conclusion 173

Chapter 18 Boundary Anatomy 175

Boundary Crossing 176
The Dreaded Monolith 176
Deployment Components 178
Threads 179
Local Processes 179
Services 180
Conclusion 181

Chapter 19 Policy and Level 183

Level 184
Conclusion 187

Chapter 20 Business Rules 189

Entities 190
Use Cases 191
Request and Response Models 193
Conclusion 194

Chapter 21 Screaming Architecture 195

The Theme of an Architecture 196
The Purpose of an Architecture 197
But What About the Web? 197
Frameworks Are Tools, Not Ways of Life 198
Testable Architectures 198
Conclusion 199

Contents

xii

Chapter 22 The Clean Architecture 201

The Dependency Rule 203
A Typical Scenario 207
Conclusion 209

Chapter 23 Presenters and Humble Objects 211

The Humble Object Pattern 212
Presenters and Views 212
Testing and Architecture 213
Database Gateways 214
Data Mappers 214
Service Listeners 215
Conclusion 215

Chapter 24 Partial Boundaries 217

Skip the Last Step 218
One-Dimensional Boundaries 219
Facades 220
Conclusion 220

Chapter 25 Layers and Boundaries 221

Hunt the Wumpus 222
Clean Architecture? 223
Crossing the Streams 226
Splitting the Streams 227
Conclusion 228

Chapter 26 The Main Component 231

The Ultimate Detail 232
Conclusion 237

Chapter 27 Services: Great and Small 239

Service Architecture? 240
Service Benefits? 240
The Kitty Problem 242
Objects to the Rescue 244

Contents

xiii

Component-Based Services 245
Cross-Cutting Concerns 246
Conclusion 247

Chapter 28 The Test Boundary 249

Tests as System Components 250
Design for Testability 251
The Testing API 252
Conclusion 253

Chapter 29 Clean Embedded Architecture 255

App-titude Test 258
The Target-Hardware Bottleneck 261
Conclusion 273

PART VI Details 275

Chapter 30 The Database Is a Detail 277

Relational Databases 278
Why Are Database Systems So Prevalent? 279
What If There Were No Disk? 280
Details 281
But What about Performance? 281
Anecdote 281
Conclusion 283

Chapter 31 The Web Is a Detail 285

The Endless Pendulum 286
The Upshot 288
Conclusion 289

Chapter 32 Frameworks Are Details 291

Framework Authors 292
Asymmetric Marriage 292
The Risks 293
The Solution 294

Contents

xiv

I Now Pronounce You … 295
Conclusion 295

Chapter 33 Case Study: Video Sales 297

The Product 298
Use Case Analysis 298
Component Architecture 300
Dependency Management 302
Conclusion 302

Chapter 34 The Missing Chapter 303

Package by Layer 304
Package by Feature 306
Ports and Adapters 308
Package by Component 310
The Devil Is in the Implementation Details 315
Organization versus Encapsulation 316
Other Decoupling Modes 319
Conclusion: The Missing Advice 321

PART VII Appendix 323

Appendix A Architecture Archaeology 325

Index 375

xv

Foreword

What do we talk about when we talk about architecture?

As with any metaphor, describing software through the lens of architecture
can hide as much as it can reveal. It can both promise more than it can deliver
and deliver more than it promises.

The obvious appeal of architecture is structure, and structure is something
that dominates the paradigms and discussions of software development—
components, classes, functions, modules, layers, and services, micro or macro.
But the gross structure of so many software systems often defies either belief
or understanding—Enterprise Soviet schemes destined for legacy, improbable
Jenga towers reaching toward the cloud, archaeological layers buried in a big-
ball-of-mud slide. It’s not obvious that software structure obeys our intuition
the way building structure does.

Buildings have an obvious physical structure, whether rooted in stone or
concrete, whether arching high or sprawling wide, whether large or small,
whether magnificent or mundane. Their structures have little choice but to
respect the physics of gravity and their materials. On the other hand—except
in its sense of seriousness—software has little time for gravity. And what is
software made of? Unlike buildings, which may be made of bricks, concrete,

Foreword

xvi

wood, steel, and glass, software is made of software. Large software
constructs are made from smaller software components, which are in turn
made of smaller software components still, and so on. It’s coding turtles all
the way down.

When we talk about software architecture, software is recursive and fractal in
nature, etched and sketched in code. Everything is details. Interlocking levels
of detail also contribute to a building’s architecture, but it doesn’t make sense
to talk about physical scale in software. Software has structure—many
structures and many kinds of structures—but its variety eclipses the range of
physical structure found in buildings. You can even argue quite convincingly
that there is more design activity and focus in software than in building
architecture—in this sense, it’s not unreasonable to consider software architecture
more architectural than building architecture!

But physical scale is something humans understand and look for in the world.
Although appealing and visually obvious, the boxes on a PowerPoint diagram
are not a software system’s architecture. There’s no doubt they represent a
particular view of an architecture, but to mistake boxes for the big picture—
for the architecture—is to miss the big picture and the architecture: Software
architecture doesn’t look like anything. A particular visualization is a choice,
not a given. It is a choice founded on a further set of choices: what to include;
what to exclude; what to emphasize by shape or color; what to de-emphasize
through uniformity or omission. There is nothing natural or intrinsic about
one view over another.

Although it might not make sense to talk about physics and physical scale in
software architecture, we do appreciate and care about certain physical
constraints. Processor speed and network bandwidth can deliver a harsh
verdict on a system’s performance. Memory and storage can limit the
ambitions of any code base. Software may be such stuff as dreams are made
on, but it runs in the physical world.

This is the monstrosity in love, lady, that the will is infinite, and the execution
confined; that the desire is boundless, and the act a slave to limit.

—William Shakespeare

Foreword

xvii

The physical world is where we and our companies and our economies live.
This gives us another calibration we can understand software architecture by,
other less physical forces and quantities through which we can talk and
reason.

Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change.

—Grady Booch

Time, money, and effort give us a sense of scale to sort between the large and
the small, to distinguish the architectural stuff from the rest. This measure
also tells us how we can determine whether an architecture is good or not:
Not only does a good architecture meet the needs of its users, developers, and
owners at a given point in time, but it also meets them over time.

If you think good architecture is expensive, try bad architecture.
—Brian Foote and Joseph Yoder

The kinds of changes a system’s development typically experiences should not
be the changes that are costly, that are hard to make, that take managed
projects of their own rather than being folded into the daily and weekly flow
of work.

That point leads us to a not-so-small physics-related problem: time travel.
How do we know what those typical changes will be so that we can shape
those significant decisions around them? How do we reduce future
development effort and cost without crystal balls and time machines?

Architecture is the decisions that you wish you could get right early in a project,
but that you are not necessarily more likely to get them right than any other.

—Ralph Johnson

Understanding the past is hard enough as it is; our grasp of the present is
slippery at best; predicting the future is nontrivial.

This is where the road forks many ways.

Foreword

xviii

Down the darkest path comes the idea that strong and stable architecture
comes from authority and rigidity. If change is expensive, change is
eliminated—its causes subdued or headed off into a bureaucratic ditch. The
architect’s mandate is total and totalitarian, with the architecture becoming a
dystopia for its developers and a constant source of frustration for all.

Down another path comes a strong smell of speculative generality. A route
filled with hard-coded guesswork, countless parameters, tombs of dead code,
and more accidental complexity than you can shake a maintenance budget at.

The path we are most interested is the cleanest one. It recognizes the softness
of software and aims to preserve it as a first-class property of the system. It
recognizes that we operate with incomplete knowledge, but it also
understands that, as humans, operating with incomplete knowledge is
something we do, something we’re good at. It plays more to our strengths
than to our weaknesses. We create things and we discover things. We ask
questions and we run experiments. A good architecture comes from
understanding it more as a journey than as a destination, more as an ongoing
process of enquiry than as a frozen artifact.

Architecture is a hypothesis, that needs to be proven by implementation and
measurement.

—Tom Gilb

To walk this path requires care and attention, thought and observation,
practice and principle. This might at first sound slow, but it’s all in the way
that you walk.

The only way to go fast, is to go well.
—Robert C. Martin

Enjoy the journey.

—Kevlin Henney
May 2017

xix

Preface

The title of this book is Clean Architecture. That’s an audacious name. Some
would even call it arrogant. So why did I choose that title, and why did I write
this book?

I wrote my very first line of code in 1964, at the age of 12. The year is now
2016, so I have been writing code for more than half a century. In that time, I
have learned a few things about how to structure software systems—things
that I believe others would likely find valuable.

I learned these things by building many systems, both large and small. I have
built small embedded systems and large batch processing systems. I have built
real-time systems and web systems. I have built console apps, GUI apps,
process control apps, games, accounting systems, telecommunications
systems, design tools, drawing apps, and many, many others.

I have built single-threaded apps, multithreaded apps, apps with few heavy-
weight processes, apps with many light-weight processes, multiprocessor
apps, database apps, mathematical apps, computational geometry apps, and
many, many others.

Preface

xx

I’ve built a lot of apps. I’ve built a lot of systems. And from them all, and by
taking them all into consideration, I’ve learned something startling.

The architecture rules are the same!

This is startling because the systems that I have built have all been so radically
different. Why should such different systems all share similar rules of
architecture? My conclusion is that the rules of software architecture are
independent of every other variable.

This is even more startling when you consider the change that has taken place
in hardware over the same half-century. I started programming on machines
the size of kitchen refrigerators that had half-megahertz cycle times, 4K of
core memory, 32K of disk memory, and a 10 character per second teletype
interface. I am writing this preface on a bus while touring in South Africa. I
am using a MacBook with four i7 cores running at 2.8 gigahertz each. It has
16 gigabytes of RAM, a terabyte of SSD, and a 2880*1800 retina display
capable of showing extremely high-definition video. The difference in
computational power is staggering. Any reasonable analysis will show that
this MacBook is at least 1022 more powerful than those early computers that I
started using half a century ago.

Twenty-two orders of magnitude is a very large number. It is the number of
angstroms from Earth to Alpha-Centuri. It is the number of electrons in the
change in your pocket or purse. And yet that number—that number at least—
is the computational power increase that I have experienced in my own
lifetime.

And with all that vast change in computational power, what has been the
effect on the software I write? It’s gotten bigger certainly. I used to think 2000
lines was a big program. After all, it was a full box of cards that weighed 10
pounds. Now, however, a program isn’t really big until it exceeds 100,000
lines.

The software has also gotten much more performant. We can do things today
that we could scarcely dream about in the 1960s. The Forbin Project, The

Preface

xxi

Moon Is a Harsh Mistress, and 2001: A Space Odyssey all tried to imagine
our current future, but missed the mark rather significantly. They all imagined
huge machines that gained sentience. What we have instead are impossibly
small machines that are still … just machines.

And there is one thing more about the software we have now, compared to the
software from back then: It’s made of the same stuff. It’s made of if
statements, assignment statements, and while loops.

Oh, you might object and say that we’ve got much better languages and
superior paradigms. After all, we program in Java, or C#, or Ruby, and we
use object-oriented design. True—and yet the code is still just an assemblage
of sequence, selection, and iteration, just as it was back in the 1960s and
1950s.

When you really look closely at the practice of programming computers, you
realize that very little has changed in 50 years. The languages have gotten a
little better. The tools have gotten fantastically better. But the basic building
blocks of a computer program have not changed.

If I took a computer programmer from 1966 forward in time to 2016 and put
her1 in front of my MacBook running IntelliJ and showed her Java, she might
need 24 hours to recover from the shock. But then she would be able to write
the code. Java just isn’t that different from C, or even from Fortran.

And if I transported you back to 1966 and showed you how to write and edit
PDP-8 code by punching paper tape on a 10 character per second teletype,
you might need 24 hours to recover from the disappointment. But then you
would be able to write the code. The code just hasn’t changed that much.

That’s the secret: This changelessness of the code is the reason that the rules
of software architecture are so consistent across system types. The rules of
software architecture are the rules of ordering and assembling the building

1. And she very likely would be female since, back then, women made up a large fraction of programmers.

Preface

xxii

blocks of programs. And since those building blocks are universal and haven’t
changed, the rules for ordering them are likewise universal and changeless.

Younger programmers might think this is nonsense. They might insist that
everything is new and different nowadays, that the rules of the past are past
and gone. If that is what they think, they are sadly mistaken. The rules have
not changed. Despite all the new languages, and all the new frameworks, and
all the paradigms, the rules are the same now as they were when Alan Turing
wrote the first machine code in 1946.

But one thing has changed: Back then, we didn’t know what the rules were.
Consequently, we broke them, over and over again. Now, with half a century
of experience behind us, we have a grasp of those rules.

And it is those rules—those timeless, changeless, rules—that this book is all
about.

Register your copy of Clean Architecture on the InformIT site for
convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN
(9780134494166) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that
link to access the bonus materials.

http://informit.com/register

xxiii

Acknowledgments

The people who played a part in the creation of this book—in no particular
order:

Chris Guzikowski

Chris Zahn

Matt Heuser

Jeff Overbey

Micah Martin

Justin Martin

Carl Hickman

James Grenning

Simon Brown

Kevlin Henney

Jason Gorman

Doug Bradbury

Colin Jones

Grady Booch

Kent Beck

Acknowledgments

xxiv

Martin Fowler

Alistair Cockburn

James O. Coplien

Tim Conrad

Richard Lloyd

Ken Finder

Kris Iyer (CK)

Mike Carew

Jerry Fitzpatrick

Jim Newkirk

Ed Thelen

Joe Mabel

Bill Degnan

And many others too numerous to name.

In my final review of this book, as I was reading the chapter on Screaming
Architecture, Jim Weirich’s bright-eyed smile and melodic laugh echoed
through my mind. Godspeed, Jim!

xxv

About the Author

Robert C. Martin (Uncle Bob) has been a programmer since 1970. He is the
co-founder of cleancoders.com, which offers online video training for
software developers, and is the founder of Uncle Bob Consulting LLC, which
offers software consulting, training, and skill development services to major
corporations worldwide. He served as the Master Craftsman at 8th Light,
Inc., a Chicago-based software consulting firm. He has published dozens of
articles in various trade journals and is a regular speaker at international
conferences and trade shows. He served three years as the editor-in-chief of
the C++ Report and served as the first chairman of the Agile Alliance.

Martin has authored and edited many books, including The Clean Coder,
Clean Code, UML for Java Programmers, Agile Software Development,
Extreme Programming in Practice, More C++ Gems, Pattern Languages of
Program Design 3, and Designing Object Oriented C++ Applications Using
the Booch Method.

http://cleancoders.com

