
Clean Code in Python
Second Edition

Develop maintainable and efficient code

Mariano Anaya

BIRMINGHAM - MUMBAI



Clean Code in Python
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing or its dealers and distributors, will be held liable for any damages caused 
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

Producers: Tushar Gupta
Acquisition Editor – Peer Reviews: Divya Mudaliar
Content Development Editor: Bhavesh Amin
Technical Editor: Karan Sonawane
Project Editor: Mrunal Dave
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Soni
Presentation Designer: Ganesh Bhadwalkar

First published: August 2018
Second Edition: December 2020

Production reference: 2281220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80056-021-5

www.packt.com

http://www.packt.com


[ i ]

Table of Contents
Preface� ix
Chapter 1: Introduction, Code Formatting, and Tools� 1

Introduction� 2
The meaning of clean code� 2
The importance of having clean code� 3
Some exceptions� 5

Code formatting� 6
Adhering to a coding style guide on your project� 6

Documentation� 9
Code comments� 9
Docstrings� 10
Annotations� 13
Do annotations replace docstrings?� 17

Tooling� 19
Checking type consistency� 20
Generic validations in code� 22
Automatic formatting� 23
Setup for automatic checks� 26

Summary� 28
References� 28

Chapter 2: Pythonic Code� 29
Indexes and slices� 30

Creating your own sequences� 32
Context managers� 34

Implementing context managers� 37
Comprehensions and assignment expressions� 40



Table of Contents

[ ii ]

Properties, attributes, and different types of methods for objects� 43
Underscores in Python� 44
Properties� 46
Creating classes with a more compact syntax� 49
Iterable objects� 52

Creating iterable objects� 53
Creating sequences� 56

Container objects� 57
Dynamic attributes for objects� 59
Callable objects� 61
Summary of magic methods� 63

Caveats in Python� 64
Mutable default arguments� 64
Extending built-in types� 66

A brief introduction to asynchronous code� 68
Summary� 70
References� 71

Chapter 3: General Traits of Good Code� 73
Design by contract� 74

Preconditions� 76
Postconditions� 76
Pythonic contracts� 77
Design by contract – conclusions� 77

Defensive programming� 78
Error handling� 78

Value substitution� 79
Exception handling� 80

Using assertions in Python� 88
Separation of concerns� 90

Cohesion and coupling� 91
Acronyms to live by� 92

DRY/OAOO� 92
YAGNI� 94
KIS� 95
EAFP/LBYL� 97

Inheritance in Python� 99
When inheritance is a good decision� 99
Anti-patterns for inheritance� 100
Multiple inheritance in Python� 103

Method Resolution Order (MRO)� 104
Mixins� 106

Arguments in functions and methods� 107



Table of Contents

[ iii ]

How function arguments work in Python� 107
How arguments are copied to functions� 107
Variable number of arguments� 109
Positional-only parameters� 114
Keyword-only arguments� 115

The number of arguments in functions� 117
Function arguments and coupling� 117
Compact function signatures that take too many arguments� 118

Final remarks on good practices for software design� 120
Orthogonality in software� 120
Structuring the code� 122

Summary� 123
References� 124

Chapter 4: The SOLID Principles� 125
The single responsibility principle� 126

A class with too many responsibilities� 126
Distributing responsibilities� 128

The open/closed principle� 129
Example of maintainability perils for not following the OCP� 130
Refactoring the events system for extensibility� 133
Extending the events system� 135
Final thoughts about the OCP� 137

Liskov's substitution principle� 137
Detecting LSP issues with tools� 138

Using mypy to detect incorrect method signatures� 138
Detecting incompatible signatures with pylint� 140

More subtle cases of LSP violations� 141
Remarks on the LSP� 144

Interface segregation� 144
An interface that provides too much� 146
The smaller the interface, the better� 146
How small should an interface be?� 148

Dependency inversion� 149
A case of rigid dependencies� 150
Inverting the dependencies� 150
Dependency injection� 152

Summary� 154
References� 155

Chapter 5: Using Decorators to Improve Our Code� 157
What are decorators in Python?� 158

Function decorators� 159
Decorators for classes� 160



Table of Contents

[ iv ]

Other types of decorator� 165
More advanced decorators� 165

Passing arguments to decorators� 165
Decorators with nested functions� 166
Decorator objects� 168

Decorators with default values� 169
Decorators for coroutines� 172
Extended syntax for decorators� 175

Good uses for decorators� 176
Adapting function signatures� 176
Validating parameters� 178
Tracing code� 178

Effective decorators – avoiding common mistakes� 178
Preserving data about the original wrapped object� 179
Dealing with side effects in decorators� 181

Incorrect handling of side effects in a decorator� 182
Requiring decorators with side effects� 184

Creating decorators that will always work� 186
Decorators and clean code� 189

Composition over inheritance� 189
The DRY principle with decorators� 192
Decorators and separation of concerns� 193
Analysis of good decorators� 195

Summary� 197
References� 197

Chapter 6: Getting More Out of Our Objects with Descriptors� 199
A first look at descriptors� 200

The machinery behind descriptors� 200
Exploring each method of the descriptor protocol� 203

The get method� 203
The set method� 205
The delete method� 207
The set name method� 210

Types of descriptors� 211
Non-data descriptors� 212
Data descriptors� 214

Descriptors in action� 217
An application of descriptors� 217

A first attempt without using descriptors� 217
The idiomatic implementation� 219

Different forms of implementing descriptors� 222
The issue of shared state� 222
Accessing the dictionary of the object� 223



Table of Contents

[ v ]

Using weak references� 224
More considerations about descriptors� 225

Reusing code� 225
An alternative to class decorators� 226

Analysis of descriptors� 230
How Python uses descriptors internally� 230

Functions and methods� 230
Built-in decorators for methods� 234
Slots� 235

Implementing descriptors in decorators� 237
Final remarks about descriptors� 237

Interface of descriptors� 237
Object-oriented design of the descriptors� 238
Type annotations on descriptors� 238

Summary� 239
References� 240

Chapter 7: Generators, Iterators, and Asynchronous  
Programming� 241

Technical requirements� 242
Creating generators� 242

A first look at generators� 242
Generator expressions� 246

Iterating idiomatically� 247
Idioms for iteration� 247

The next() function� 249
Using a generator� 250
Itertools� 251
Simplifying code through iterators� 252
The iterator pattern in Python� 255

Coroutines� 259
The methods of the generator interface� 260

close()� 260
throw(ex_type[, ex_value[, ex_traceback]])� 261
send(value)� 263

More advanced coroutines� 266
Returning values in coroutines� 266
Delegating into smaller coroutines – the 'yield from' syntax� 268

Asynchronous programming� 273
Magic asynchronous methods� 275

Asynchronous context managers� 276
Other magic methods� 277

Asynchronous iteration� 278
Asynchronous generators� 280

Summary� 281



Table of Contents

[ vi ]

References� 282
Chapter 8: Unit Testing and Refactoring� 285

Design principles and unit testing� 286
A note about other forms of automated testing� 287
Unit testing and agile software development� 288
Unit testing and software design� 289
Defining the boundaries of what to test� 293

Tools for testing� 293
Frameworks and libraries for unit testing� 294

unittest� 295
pytest� 301
Code coverage� 306
Mock objects� 309

Refactoring� 315
Evolving our code� 316
Production code isn't the only one that evolves� 318

More about testing� 319
Property-based testing� 320
Mutation testing� 320
Common themes in testing� 323

Boundaries or limit values� 323
Classes of equivalence� 323
Edge cases� 324

A brief introduction to test-driven development� 325
Summary� 325
References� 326

Chapter 9: Common Design Patterns� 327
Design pattern considerations in Python� 328
Design patterns in action� 329

Creational patterns� 330
Factories� 330
Singleton and shared state (monostate)� 331
Builder� 336

Structural patterns� 337
Adapter� 337
Composite� 339
Decorator� 340
Facade� 343

Behavioral patterns� 344
Chain of responsibility� 345
The template method� 348
Command� 349
State� 350



Table of Contents

[ vii ]

The null object pattern� 355
Final thoughts about design patterns� 358

The influence of patterns over the design� 358
Design patterns as theory� 359
Names in our models� 360

Summary� 360
References� 361

Chapter 10: Clean Architecture� 363
From clean code to clean architecture� 364

Separation of concerns� 364
Monolithic applications and microservices� 366
Abstractions� 367

Software components� 368
Packages� 369

Managing dependencies� 372
Other considerations when managing dependencies� 374
Artifact versions� 376

Docker containers� 376
Use case� 378

The code� 379
Domain models� 380
Calling from the application� 382
Adapters� 383

The services� 384
Analysis� 388
The dependency flow� 388
Limitations� 389
Testability� 389
Intention revealing� 390

Summary� 390
References� 391
Summing it all up� 391

Share your experience� 392
Other Books You May Enjoy� 393
Index� 395




