Designing Data-Intensive Applications

The Big Ideas Behind Reliable, Scalable, and Maintainable Systems

Martin Kleppmann

Table of Contents

Pre	Preface xiii		
Par	rt I. Foundations of Data Systems		
1.	. Reliable, Scalable, and Maintainable Applications	s 3	
	Thinking About Data Systems	4	
	Reliability	6	
	Hardware Faults	7	
	Software Errors	8	
	Human Errors	9	
	How Important Is Reliability?	10	
	Scalability	10	
	Describing Load	11	
	Describing Performance	13	
	Approaches for Coping with Load	17	
	Maintainability	18	
	Operability: Making Life Easy for Operation	ıs 19	
	Simplicity: Managing Complexity	20	
	Evolvability: Making Change Easy	21	
	Summary	22	
2.	. Data Models and Query Languages	27	
	Relational Model Versus Document Model	28	
	The Birth of NoSQL	29	
	The Object-Relational Mismatch	29	
	Many-to-One and Many-to-Many Relations	ships 33	
	Are Document Databases Repeating History	-	

	Relational Versus Document Databases Today	38
	Query Languages for Data	42
	Declarative Queries on the Web	44
	MapReduce Querying	46
	Graph-Like Data Models	49
	Property Graphs	50
	The Cypher Query Language	52
	Graph Queries in SQL	53
	Triple-Stores and SPARQL	55
	The Foundation: Datalog	60
	Summary	63
3.	Storage and Retrieval	. 69
	Data Structures That Power Your Database	70
	Hash Indexes	72
	SSTables and LSM-Trees	76
	B-Trees	79
	Comparing B-Trees and LSM-Trees	83
	Other Indexing Structures	85
	Transaction Processing or Analytics?	90
	Data Warehousing	91
	Stars and Snowflakes: Schemas for Analytics	93
	Column-Oriented Storage	95
	Column Compression	97
	Sort Order in Column Storage	99
	Writing to Column-Oriented Storage	101
	Aggregation: Data Cubes and Materialized Views	101
	Summary	103
4.	Encoding and Evolution	111
	Formats for Encoding Data	112
	Language-Specific Formats	113
	JSON, XML, and Binary Variants	114
	Thrift and Protocol Buffers	117
	Avro	122
	The Merits of Schemas	127
	Modes of Dataflow	128
	Dataflow Through Databases	129
	Dataflow Through Services: REST and RPC	131
	Message-Passing Dataflow	136
	Summary	139

Part II. Distributed Data

5.	Replication	151
	Leaders and Followers	152
	Synchronous Versus Asynchronous Replication	153
	Setting Up New Followers	155
	Handling Node Outages	156
	Implementation of Replication Logs	158
	Problems with Replication Lag	161
	Reading Your Own Writes	162
	Monotonic Reads	164
	Consistent Prefix Reads	165
	Solutions for Replication Lag	167
	Multi-Leader Replication	168
	Use Cases for Multi-Leader Replication	168
	Handling Write Conflicts	171
	Multi-Leader Replication Topologies	175
	Leaderless Replication	177
	Writing to the Database When a Node Is Down	177
	Limitations of Quorum Consistency	181
	Sloppy Quorums and Hinted Handoff	183
	Detecting Concurrent Writes	184
	Summary	192
5.	Partitioning	199
	Partitioning and Replication	200
	Partitioning of Key-Value Data	201
	Partitioning by Key Range	202
	Partitioning by Hash of Key	203
	Skewed Workloads and Relieving Hot Spots	205
	Partitioning and Secondary Indexes	206
	Partitioning Secondary Indexes by Document	206
	Partitioning Secondary Indexes by Term	208
	Rebalancing Partitions	209
	Strategies for Rebalancing	210
	Operations: Automatic or Manual Rebalancing	213
	Request Routing	214
	Parallel Query Execution	216
	Summary	216
7	Transactions	221
•	The Slippery Concept of a Transaction	222
	The outpoint Concept of a franchedon	

	The Meaning of ACID	223
	Single-Object and Multi-Object Operations	228
	Weak Isolation Levels	233
	Read Committed	234
	Snapshot Isolation and Repeatable Read	237
	Preventing Lost Updates	242
	Write Skew and Phantoms	246
	Serializability	251
	Actual Serial Execution	252
	Two-Phase Locking (2PL)	257
	Serializable Snapshot Isolation (SSI)	261
	Summary	266
8.	The Trouble with Distributed Systems	273
	Faults and Partial Failures	274
	Cloud Computing and Supercomputing	275
	Unreliable Networks	277
	Network Faults in Practice	279
	Detecting Faults	280
	Timeouts and Unbounded Delays	281
	Synchronous Versus Asynchronous Networks	284
	Unreliable Clocks	287
	Monotonic Versus Time-of-Day Clocks	288
	Clock Synchronization and Accuracy	289
	Relying on Synchronized Clocks	291
	Process Pauses	295
	Knowledge, Truth, and Lies	300
	The Truth Is Defined by the Majority	300
	Byzantine Faults	304
	System Model and Reality	306
	Summary	310
9.	Consistency and Consensus	321
	Consistency Guarantees	322
	Linearizability	324
	What Makes a System Linearizable?	325
	Relying on Linearizability	330
	Implementing Linearizable Systems	332
	The Cost of Linearizability	335
	Ordering Guarantees	339
	Ordering and Causality	339
	Sequence Number Ordering	343

	Total Order Broadcast	348
	Distributed Transactions and Consensus	352
	Atomic Commit and Two-Phase Commit (2PC)	354
	Distributed Transactions in Practice	360
	Fault-Tolerant Consensus	364
	Membership and Coordination Services	370
	Summary	373
Par	t III. Derived Data	
10.	Batch Processing	389
	Batch Processing with Unix Tools	391
	Simple Log Analysis	391
	The Unix Philosophy	394
	MapReduce and Distributed Filesystems	397
	MapReduce Job Execution	399
	Reduce-Side Joins and Grouping	403
	Map-Side Joins	408
	The Output of Batch Workflows	411
	Comparing Hadoop to Distributed Databases	414
	Beyond MapReduce	419
	Materialization of Intermediate State	419
	Graphs and Iterative Processing	424
	High-Level APIs and Languages	426
	Summary	429
11.	Stream Processing	439
	Transmitting Event Streams	440
	Messaging Systems	441
	Partitioned Logs	446
	Databases and Streams	451
	Keeping Systems in Sync	452
	Change Data Capture	454
	Event Sourcing	457
	State, Streams, and Immutability	459
	Processing Streams	464
	Uses of Stream Processing	465
	Reasoning About Time	468
	Stream Joins Fault Tolerance	472
		476
	Summary	479

12.	The Future of Data Systems	489
	Data Integration	490
	Combining Specialized Tools by Deriving Data	490
	Batch and Stream Processing	494
	Unbundling Databases	499
	Composing Data Storage Technologies	499
	Designing Applications Around Dataflow	504
	Observing Derived State	509
	Aiming for Correctness	515
	The End-to-End Argument for Databases	516
	Enforcing Constraints	521
	Timeliness and Integrity	524
	Trust, but Verify	528
	Doing the Right Thing	533
	Predictive Analytics	533
	Privacy and Tracking	536
	Summary	543
Glos	sary	553
Inde	y,	559