
Domain-Driven
Design

T A C K L I N G C O M P L E X I T Y I N
T H E H E A R T O F S O F T WA R E

Eric Evans

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

See page 517 for photo credits.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Evans, Eric, 1962–
Domain-driven design : tackling complexity in the heart of software / Eric
Evans.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-12521-5
1. Computer software—Development. 2. Object-oriented programming
(Computer science) I. Title.

QA76.76.D47E82 2003
005.1—dc21

2003050331

Copyright © 2004 by Eric Evans

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit
a written request to:

Pearson Education, Inc.
Rights and Contracts Department
500 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 0-321-12521-5
Text printed in the United States on recycled paper at Courier in Westford,

Massachusetts.

Twenty-First printing, July 2015

www.awprofessional.com

ix

Foreword xvii
Preface xix
Acknowledgments xxix

Part I
Putting the Domain Model to Work 1

Chapter 1: Crunching Knowledge 7

Ingredients of Effective Modeling 12
Knowledge Crunching 13
Continuous Learning 15
Knowledge-Rich Design 17
Deep Models 20

Chapter 2: Communication and the Use of Language 23

UBIQUITOUS LANGUAGE 24
Modeling Out Loud 30
One Team, One Language 32
Documents and Diagrams 35

Written Design Documents 37
Executable Bedrock 40

Explanatory Models 41

Chapter 3: Binding Model and Implementation 45

MODEL-DRIVEN DESIGN 47
Modeling Paradigms and Tool Support 50
Letting the Bones Show: Why Models Matter to Users 57
HANDS-ON MODELERS 60

C O N T E N T S

Part II
The Building Blocks of a Model-Driven Design 63

Chapter 4: Isolating the Domain 67

LAYERED ARCHITECTURE 68
Relating the Layers 72
Architectural Frameworks 74

The Domain Layer Is Where the Model Lives 75
THE SMART UI “ANTI-PATTERN” 76
Other Kinds of Isolation 79

Chapter 5: A Model Expressed in Software 81

Associations 82
ENTITIES (A.K.A. REFERENCE OBJECTS) 89

Modeling ENTITIES 93
Designing the Identity Operation 94

VALUE OBJECTS 97
Designing VALUE OBJECTS 99
Designing Associations That Involve VALUE OBJECTS 102

SERVICES 104
SERVICES and the Isolated Domain Layer 106
Granularity 108
Access to SERVICES 108

MODULES (A.K.A. PACKAGES) 109
Agile MODULES 111
The Pitfalls of Infrastructure-Driven Packaging 112

Modeling Paradigms 116
Why the Object Paradigm Predominates 116
Nonobjects in an Object World 119
Sticking with MODEL-DRIVEN DESIGN When

Mixing Paradigms 120

Chapter 6: The Life Cycle of a Domain Object 123

AGGREGATES 125
FACTORIES 136

Choosing FACTORIES and Their Sites 139
When a Constructor Is All You Need 141
Designing the Interface 143

x C O N T E N T S

Where Does Invariant Logic Go? 144
ENTITY FACTORIES Versus VALUE OBJECT FACTORIES 144
Reconstituting Stored Objects 145

REPOSITORIES 147
Querying a REPOSITORY 152
Client Code Ignores REPOSITORY Implementation;

Developers Do Not 154
Implementing a REPOSITORY 155
Working Within Your Frameworks 156
The Relationship with FACTORIES 157

Designing Objects for Relational Databases 159

Chapter 7: Using the Language: An Extended Example 163

Introducing the Cargo Shipping System 163
Isolating the Domain: Introducing the Applications 166
Distinguishing ENTITIES and VALUE OBJECTS 167

Role and Other Attributes 168
Designing Associations in the Shipping Domain 169
AGGREGATE Boundaries 170
Selecting REPOSITORIES 172
Walking Through Scenarios 173

Sample Application Feature: Changing the Destination
of a Cargo 173

Sample Application Feature: Repeat Business 173
Object Creation 174

FACTORIES and Constructors for Cargo 174
Adding a Handling Event 175

Pause for Refactoring: An Alternative Design of the
Cargo AGGREGATE 177

MODULES in the Shipping Model 179
Introducing a New Feature: Allocation Checking 181

Connecting the Two Systems 182
Enhancing the Model: Segmenting the Business 183
Performance Tuning 185

A Final Look 186

xiC O N T E N T S

Part III
Refactoring Toward Deeper Insight 187

Chapter 8: Breakthrough 193

Story of a Breakthrough 194
A Decent Model, and Yet . . . 194
The Breakthrough 196
A Deeper Model 198
A Sobering Decision 199
The Payoff 200

Opportunities 201
Focus on Basics 201
Epilogue: A Cascade of New Insights 202

Chapter 9: Making Implicit Concepts Explicit 205

Digging Out Concepts 206
Listen to Language 206
Scrutinize Awkwardness 210
Contemplate Contradictions 216
Read the Book 217
Try, Try Again 219

How to Model Less Obvious Kinds of Concepts 219
Explicit Constraints 220
Processes as Domain Objects 222
SPECIFICATION 224
Applying and Implementing SPECIFICATION 227

Chapter 10: Supple Design 243

INTENTION-REVEALING INTERFACES 246
SIDE-EFFECT-FREE FUNCTIONS 250
ASSERTIONS 255
CONCEPTUAL CONTOURS 260
STANDALONE CLASSES 265
CLOSURE OF OPERATIONS 268
Declarative Design 270

Domain-Specific Languages 272
A Declarative Style of Design 273

Extending SPECIFICATIONS in a Declarative Style 273
Angles of Attack 282

xii C O N T E N T S

Carve Off Subdomains 283
Draw on Established Formalisms, When You Can 283

Chapter 11: Applying Analysis Patterns 293

Chapter 12: Relating Design Patterns to the Model 309

STRATEGY (A.K.A. POLICY) 311
COMPOSITE 315
Why Not FLYWEIGHT? 320

Chapter 13: Refactoring Toward Deeper Insight 321

Initiation 321
Exploration Teams 322
Prior Art 323
A Design for Developers 324
Timing 324
Crisis as Opportunity 325

Part IV
Strategic Design 327

Chapter 14: Maintaining Model Integrity 331

BOUNDED CONTEXT 335
Recognizing Splinters Within a BOUNDED CONTEXT 339

CONTINUOUS INTEGRATION 341
CONTEXT MAP 344

Testing at the CONTEXT Boundaries 351
Organizing and Documenting CONTEXT MAPS 351

Relationships Between BOUNDED CONTEXTS 352
SHARED KERNEL 354
CUSTOMER/SUPPLIER DEVELOPMENT TEAMS 356
CONFORMIST 361
ANTICORRUPTION LAYER 364

Designing the Interface of the ANTICORRUPTION LAYER 366
Implementing the ANTICORRUPTION LAYER 366
A Cautionary Tale 370

SEPARATE WAYS 371
OPEN HOST SERVICE 374
PUBLISHED LANGUAGE 375

xiiiC O N T E N T S

Unifying an Elephant 378
Choosing Your Model Context Strategy 381

Team Decision or Higher 382
Putting Ourselves in Context 382
Transforming Boundaries 382
Accepting That Which We Cannot Change: Delineating

the External Systems 383
Relationships with the External Systems 384
The System Under Design 385
Catering to Special Needs with Distinct Models 386
Deployment 387
The Trade-off 388
When Your Project Is Already Under Way 388

Transformations 389
Merging CONTEXTS: SEPARATE WAYS ➝ SHARED KERNEL 389
Merging CONTEXTS: SHARED KERNEL ➝ CONTINUOUS

INTEGRATION 391
Phasing Out a Legacy System 393
OPEN HOST SERVICE ➝ PUBLISHED LANGUAGE 394

Chapter 15: Distillation 397

CORE DOMAIN 400
Choosing the CORE 402
Who Does the Work? 403

An Escalation of Distillations 404
GENERIC SUBDOMAINS 406

Generic Doesn’t Mean Reusable 412
Project Risk Management 413

DOMAIN VISION STATEMENT 415
HIGHLIGHTED CORE 417

The Distillation Document 418
The Flagged CORE 419
The Distillation Document as Process Tool 420

COHESIVE MECHANISMS 422
GENERIC SUBDOMAIN Versus COHESIVE MECHANISM 424
When a MECHANISM Is Part of the CORE DOMAIN 425

Distilling to a Declarative Style 426
SEGREGATED CORE 428

xiv C O N T E N T S

The Costs of Creating a SEGREGATED CORE 429
Evolving Team Decision 430

ABSTRACT CORE 435
Deep Models Distill 436
Choosing Refactoring Targets 437

Chapter 16: Large-Scale Structure 439

EVOLVING ORDER 444
SYSTEM METAPHOR 447

The “Naive Metaphor” and Why We Don’t Need It 448
RESPONSIBILITY LAYERS 450

Choosing Appropriate Layers 460
KNOWLEDGE LEVEL 465
PLUGGABLE COMPONENT FRAMEWORK 475
How Restrictive Should a Structure Be? 480
Refactoring Toward a Fitting Structure 481

Minimalism 481
Communication and Self-Discipline 482
Restructuring Yields Supple Design 482
Distillation Lightens the Load 483

Chapter 17: Bringing the Strategy Together 485

Combining Large-Scale Structures and BOUNDED CONTEXTS 485
Combining Large-Scale Structures and Distillation 488
Assessment First 490
Who Sets the Strategy? 490

Emergent Structure from Application Development 491
A Customer-Focused Architecture Team 492

Six Essentials for Strategic Design Decision Making 492
The Same Goes for the Technical Frameworks 495
Beware the Master Plan 496

Conclusion 499

Appendix: The Use of Patterns in This Book 507
Glossary 511
References 515
Photo Credits 517
Index 519

xvC O N T E N T S

