Effective Modern (++

Scott Meyers

Beijing + Cambridge + Farnham - Kaln « Sebastopol - Tokyo [KOAR{S|HNES

Effective Modern C++
by Scott Meyers

Copyright © 2015 Scott Meyers. All rights reserved.
Printed in the Canada.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Proofreader: Charles Roumeliotis
Production Editor: Melanie Yarbrough Indexer: Scott Meyers
Copyeditor: Jasmine Kwityn Interior Designer: David Futato

Cover Designer: Ellie Volkhausen
lllustrator: Rebecca Demarest

November 2014: First Edition

Revision History for the First Edition
2014-11-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491903995 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Effective Modern C++, the cover image
of a Rose-crowned Fruit Dove, and related trade dress are trademarks of O'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-90399-5
(T1]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491903995

Table of Contents

Fromthe Publisher............coooiiiiiiii Xi
Acknowledgments.oovuirinieeiie i iiie it eaaas Xiii
INtrOdUCtION. .. 1
1. Deducing TYPeS. .. evee ettt teeeieetieeterenerenneennesnnesenesennnns 9
Item 1: Understand template type deduction. 9
Item 2: Understand auto type deduction. 18
Item 3: Understand decltype. 23
Item 4: Know how to view deduced types. 30
R 11 o« 37
Item 5: Prefer auto to explicit type declarations. 37
Item 6: Use the explicitly typed initializer idiom when auto deduces
undesired types. 43
3. MovingtoModern CH+. ..o oviniiiii ittt i i it eieeaieeaneans 49
Item 7: Distinguish between () and {} when creating objects. 49
Item 8: Prefer nullptr to ® and NULL. 58
Item 9: Prefer alias declarations to typedefs. 63
Item 10: Prefer scoped enums to unscoped enums. 67
Item 11: Prefer deleted functions to private undefined ones. 74
Item 12: Declare overriding functions override. 79
Item 13: Prefer const_iteratorsto iterators. 86
Item 14: Declare functions noexcept if they won’t emit exceptions. 90
Item 15: Use constexpr whenever possible. 97

vii

Item 16: Make const member functions thread safe.
Item 17: Understand special member function generation.

SMANt POINTErS. .. v vttt ettt ittt ittt ttietieenesneranranenns

Item 18: Use std: :unique_ptr for exclusive-ownership resource
management.

Item 19: Use std: :shared_ptr for shared-ownership resource
management.

Item 20: Use std: :weak_ptr for std: :shared_ptr-like pointers that can
dangle.

Item 21: Prefer std: :make_unique and std: :make_shared to direct use of
new.

Item 22: When using the Pimpl Idiom, define special member functions in
the implementation file.

. Rvalue References, Move Semantics, and Perfect Forwarding....................

Item 23: Understand std: :move and std: : forward.

Item 24: Distinguish universal references from rvalue references.

Item 25: Use std: :move on rvalue references, std: : forward on universal
references.

Item 26: Avoid overloading on universal references.

Item 27: Familiarize yourself with alternatives to overloading on universal
references.

Item 28: Understand reference collapsing.

Item 29: Assume that move operations are not present, not cheap, and not
used.

Item 30: Familiarize yourself with perfect forwarding failure cases.

Lambda EXpressions.oovueeiniriiie it iii it
Item 31: Avoid default capture modes.

Item 32: Use init capture to move objects into closures.

Item 33: Use decltype on auto&& parameters to std: : forward them.

Item 34: Prefer lambdas to std: :bind.

. TheConcurrency APlovue ittt it eeans

Item 35: Prefer task-based programming to thread-based.

Item 36: Specify std: :launch: :async if asynchronicity is essential.
Item 37: Make std: : threads unjoinable on all paths.

Item 38: Be aware of varying thread handle destructor behavior.
Item 39: Consider void futures for one-shot event communication.

103
109

117

118

125

134

139

147

157
158
164

168
177

184
197

203
207

215
216
224
229
232

24
241
245
250
258
262

viii

| Table of Contents

Item 40: Use std: :atomic for concurrency, volatile for special memory. 271

8o Tweaks....ooveeeeei 281
Item 41: Consider pass by value for copyable parameters that are cheap to

move and always copied. 281

Item 42: Consider emplacement instead of insertion. 292

INdeX. ..ot 303

Table of Contents | ix

