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Embedded software makes up only a comparatively small part of the larger topic
of computer science. Within this, the topic of “timing” focuses only on one specific
aspect. So, is the topic of “Embedded Software Timing” one that is only relevant to
a few experts?

At this very moment, billions of embedded systems are in use worldwide.
Embedded software is running on every one of those devices with each system
having its own set of timing requirements. If those timing requirements are not
met due to a software error, the range of possible outcomes varies enormously.
Depending on the product and situation, this may range from not being noticed,
to being an annoyance for the user, to costing lives.

A good understanding for the timing challenges of embedded systems enables
the development of better, more reliable embedded software. In addition, it is not
only safety and reliability that can be improved. There are also considerable cost
savings to be had across the entire development life cycle. These are not purely
theoretical, as the practical examples in Chapter 6 highlight. The potential for cost
savings extends across the various phases of development:

* Early consideration for the issue of timing in the design of an embedded
system and its software helps decisively in increasing development efficiency
and prevents timing problems from arising in the first place.

See, among others, Sections 3.3, 6.2, and 8.1 and Chapter 9.

* Timing analysis can save time and money if the correct timing analysis technique
for the given application is used. Chapter 5 provides an overview of the different
techniques. Each has its own phases that describe its functional principle and
workflow, highlighting use cases and limitations. In addition, an interview with
one or two experts in the respective domain completes these descriptions. This
livens up the topic and provides some objectivity. If the milk has already
spilled—that is, if a project is already facing acute problems—troubleshooting
often resembles the search for a needle in a haystack, especially in the case of
timing problems. Here, too, the use of the optimal timing analysis technique
delivers decisive advantages.

* Automated tests help to save costs: this is a truism. Unfortunately, existing testing
all too often lacks explicit timing-related tests and focuses only on functional
aspects. Section 9.6 provides recommendations in the form of concrete measures
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to counteract this by ensuring embedded software timing can be verified in a
well-structured manner.

» If a project reaches the point where the processor is permanently or sporadically
overloaded, measures must be taken to relieve the load. This often occurs when
deadlines are approaching, and, therefore, a task force is formed to relieve the
situation. Chapter 8 offers knowledge that can serve as a valuable basis for such
task forces. Section 8.4, which rounds off the chapter, can be used as a starting
point.

The focus throughout the book is to provide a close proximity to practice. Theory
is always illustrated with examples, and there are plenty of concrete tips for design,
implementation, debugging, and verification.

The chapters are structured in such a way that they can be read most easily in the
given order. Nevertheless, while writing this book, an attempt has been made to give
each chapter a certain degree of independence, so that the reader is not lost when it
is used to look something up or when reading selectively.

I would be grateful for any suggestions, criticism, and hints regarding mistakes
and also welcome contact for direct professional discussion.

With that, I wish you lots of enjoyment and technical insight while reading.

Weilheim, Germany Peter Gliwa
May 2020
peter.gliwa@gliwa.com

All brand names and trademarks in this book are the property of their rightful owners and are
used for description only.
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