Peter Gliwa

Embedded Software
Timing

Methodology, Analysis and Practical
Tips with a Focus on Automotive

@ Springer

Peter Gliwa
Gliwa GmbH
Weilheim, Germany

ISBN 978-3-030-64143-6 ISBN 978-3-030-64144-3 (eBook)
https://doi.org/10.1007/978-3-030-64144-3

Translated and Extended from the German Edition P. Gliwa “Embedded Software Timing” © 2020
Springer Fachmedien Wiesbaden GmbH

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-64144-3

Embedded software makes up only a comparatively small part of the larger topic
of computer science. Within this, the topic of “timing” focuses only on one specific
aspect. So, is the topic of “Embedded Software Timing” one that is only relevant to
a few experts?

At this very moment, billions of embedded systems are in use worldwide.
Embedded software is running on every one of those devices with each system
having its own set of timing requirements. If those timing requirements are not
met due to a software error, the range of possible outcomes varies enormously.
Depending on the product and situation, this may range from not being noticed,
to being an annoyance for the user, to costing lives.

A good understanding for the timing challenges of embedded systems enables
the development of better, more reliable embedded software. In addition, it is not
only safety and reliability that can be improved. There are also considerable cost
savings to be had across the entire development life cycle. These are not purely
theoretical, as the practical examples in Chapter 6 highlight. The potential for cost
savings extends across the various phases of development:

* Early consideration for the issue of timing in the design of an embedded
system and its software helps decisively in increasing development efficiency
and prevents timing problems from arising in the first place.

See, among others, Sections 3.3, 6.2, and 8.1 and Chapter 9.

* Timing analysis can save time and money if the correct timing analysis technique
for the given application is used. Chapter 5 provides an overview of the different
techniques. Each has its own phases that describe its functional principle and
workflow, highlighting use cases and limitations. In addition, an interview with
one or two experts in the respective domain completes these descriptions. This
livens up the topic and provides some objectivity. If the milk has already
spilled—that is, if a project is already facing acute problems—troubleshooting
often resembles the search for a needle in a haystack, especially in the case of
timing problems. Here, too, the use of the optimal timing analysis technique
delivers decisive advantages.

* Automated tests help to save costs: this is a truism. Unfortunately, existing testing
all too often lacks explicit timing-related tests and focuses only on functional
aspects. Section 9.6 provides recommendations in the form of concrete measures

\'

vi Preface

to counteract this by ensuring embedded software timing can be verified in a
well-structured manner.

» If a project reaches the point where the processor is permanently or sporadically
overloaded, measures must be taken to relieve the load. This often occurs when
deadlines are approaching, and, therefore, a task force is formed to relieve the
situation. Chapter 8 offers knowledge that can serve as a valuable basis for such
task forces. Section 8.4, which rounds off the chapter, can be used as a starting
point.

The focus throughout the book is to provide a close proximity to practice. Theory
is always illustrated with examples, and there are plenty of concrete tips for design,
implementation, debugging, and verification.

The chapters are structured in such a way that they can be read most easily in the
given order. Nevertheless, while writing this book, an attempt has been made to give
each chapter a certain degree of independence, so that the reader is not lost when it
is used to look something up or when reading selectively.

I would be grateful for any suggestions, criticism, and hints regarding mistakes
and also welcome contact for direct professional discussion.

With that, I wish you lots of enjoyment and technical insight while reading.

Weilheim, Germany Peter Gliwa
May 2020
peter.gliwa@gliwa.com

All brand names and trademarks in this book are the property of their rightful owners and are
used for description only.

Time is the theme and focus of this book. To organize it in such a way that no
major timing problems arose when writing over 300 pages, and creating over 100
illustrations, was sometimes a challenge.

I could not have undertaken and mastered this without the active support of many
dear people.

First of all, there is Nick (Dr. Nicholas Merriam), from whom I learned a lot,
such as an understanding of caches, pipelines, and spinlocks. In general, a lot of my
knowledge about multi-core and runtime optimization has Nick as its source and
this can now be found in the book. Thanks a lot for that, Nick!

I would also like to thank all the interview partners, not only for the time
they took for the interviews but also for our collaborative work in standardization
committees—they would be much less fun without you.

A big thanks goes to Stuart Cording (www.cordingconsulting.com) who not only
brought the English in this book to an acceptable level but also found several flaws
in its contents. Many thanks!

I would like to thank Birgit Tamkus, Peter Stief, Christian Herget, Mark Russell,
and Christian Wenzel-Benner very much for their reviews and suggestions. Many
thanks to you all also for supporting me in many aspects of my daily work during
my writing-intensive periods.

I would like to thank my publisher Springer—especially, Mr. Ralf Gerstner—for
their pleasant, uncomplicated, and constructive cooperation.

I still remain today grateful to Hans Sarnowski of BMW for encouraging me,
back in 2002, to found a company that, from the very beginning, specialized in
embedded software timing. We have also achieved many successes together on the
front line of timing problems—and each and every one of them was a lot of fun.

Finally, I would like to express my greatest thanks to my wife, Priscilla, without
whom I could not have written the book. Especially in the spring of 2020—and
despite the Corona crisis—she freed up time for me, took care of our four children,
and made it possible for me to spend many weekends and holidays in peace and
quiet at the office. Many thanks for that!

Vii

www.cordingconsulting.com

Contents

1 General Basicscoooiiiiiiiiiii i 1

1.1 Real-Time.......uue 1

1.2 Phase Driven Process Model: The V-Model 2

1.3 Build Process: From the Model to the Executable.................. 3

14 Summary........oooiiiii e 11

2 Microprocessor Technology Basicso 13

2.1 Microprocessor Designccoiiiiiiiiiiiiiiiii 13

2.2 Code EXECULION. ... uutittttittiitiiiteeeeees 16

2.3 Memory Addressing and Addressing Modes 18

2.4 Wait States and Burst ACCESSES......uvviiiiiiiiiiiiiiiiiiiiiieeiens 24

2.5 CACRE .ottt 25

2,6 Pipelinecooiiiiii 30

2.7 INEEITUPLS. ..ottt et 31

2.8 Traps/EXCEPLiONScoiiiuuniiiii it 32

2.9 Data CONSISIENCYuuueiieeiniete e et 32
2.10 Comparison of Desktop Processors Versus Embedded

ProCesSOTS. ..ttt 34

201 SUMMATY . ..ot 36

3 Operating SyStems.............ooiiiii i 37

3.1 No OS: Endless-Loop Plus Interruptscccoeviiiiiiiinennnn. 38

3.2 OSEK/VDX e 40

3.3 Cooperative and Preemptive Multitasking 46

3.4 POSIX 54

3.5 SUMMAIY ...ttt et et e 60

4 Timing Theoryccoo i 61

4.1 Timing Parametersooviiiiiiiiiiiiiiiii e, 62

4.2 Statistical ASPECES «..uuunetii ettt e 68

43 CPULOAd. ... e 72

4.4 BusLoad. ..o 79

4.5 Logical Execution Time (LET)ccooiiiiiiiiiiiiiiiiiieen, 79

4.0 SUMMATY .. oe ettt e et e e 81

Contents

Timing Analysis Techniques...................cooiiiiiiiiiiiiiiiiiiin, 83
5.1 Overview, Layered VIiewccoiiiiiiiiiiiiiiiiiiiiiiiiis 83
5.2 Definitions of TErmsooouuiiiiiiiiiiiiiiiiiiiiiie s 87
5.3 Static Code ANalysiscoovvunuiiiiiiiiiii i 88
54 Code SImulation..........cooviiuiiiiiiiiiiiiii s 97
5.5 Timing Measurement.ouuueeeeeinniiieeeenniieeeennanas 105
5.6 Hardware-Based Tracing...........ccooviiiiiiiiiiiiiiiiiennnnnn. 117
5.7 Instrumentation-Based Tracingcooeeiiiiiiiiiiininn. 131
5.8 Scheduling Simulationccoiiiiiiiiiiiiiiiiiii 148
5.9 Static Scheduling Analysisccooviiiiiiiiiiiiiiiiiienniini. 156
5.10 Optimization Using Evolutionary Algorithms 166
5.11 Timing Analysis Techniques in the V-Model 168
Practical Examples of Timing Problems 171
6.1 Where Do All the Interrupts Come From?ooetl 171
6.2 OSEK ECC: Rarely the Best Choicec.ccovvviiiiiiiiiiinnnnns 173
6.3 Rare Crashes 17 min After Reset.............ccooviiiiiiiiiiiii, 175
6.4 Missing or Duplicated Sensor Dataccceviviiiiiinnn. 178
6.5 InaRace with the Handbrake On ... 183
6.6 Measurement Delivers WCET Results Greater Than Those

from Static Code ANalysiSvvviiiiiiiiiiiiiiiiiinnenns 184
6.7 Network Management Messages Appear too Soon................. 185
6.8 Seamless Timing Process in a Mass-Production Project 187
6.9 Timing Analysis Saves OEM €12mcoovviiiiiiiieeeinnnn., 187
6.10 SUMMATY ...ttt eeeeeeeees 188
Multi-Core, Many-Core, and Multi-ECU Timing 189
7.1 Multi-Core Basics ...oouuuuiieiiiiiiiiiii i 189
7.2 Different Types of Parallel Executionoooeenan. 193
7.3 Data Consistency, Spinlockscooeviiiiiiiiiiiiiiiiiiinnnn. 202
7.4 Cloning of Memory Addressesuuuuiinnnn. 207
7.5 SUMMATY ... 210
Timing Optimizationo i 213
8.1 Timing Optimization at the Scheduling Level 213
8.2 Timing Optimization of Memory Usagecceeeevvinnn.. 218
8.3 Timing Optimization at Code Leveloooiiiiiiiii.... 223
8.4 Summary and Guidelines for Timing Optimization 243
Methodology During the Development Process 247
9.1 Requirements Related to Timingcccoeeiiiiiiiinnnnns 247
9.2 Collaboration During the Developmentcccooevvviein.. 256
9.3 Timing Concept, Scheduling Layout, and OS Configuration 257
9.4 Timing Debuggingeuiiiiiiiiiiiiiiiiiiiiiiiiiiiienens 258
9.5 Timing OptimizZationeeuiiiiiiiiiiiiiiiiiiiieiieeeeeeenens 258
9.6 Timing Verification...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiienns 259

9.7 Early Consideration for Future Functionality 261

Contents Xi

9.8 Timing Supervision in the Final Product............................ 262
9.9 Positive Example: CoReMa by Vitesco Technologies.............. 263
0.10 SUMMATY ...ttt ettt e e e 265
10 AUTOSAR. ..o e 267
10.1 AUTOSAR Classical Platform (CP)cooeeviiiinnn.. 268
10.2 AUTOSAR Adaptive Platform (AP)ccoooiiiiiiiiiiiiinnnn. 271
10.3 TIMEX (AUTOSAR Timing EXtensions)............oooeeeeeeennnn. 280
10.4 ARTI (AUTOSAR/ASAM Run-Time Interface) 282
10.5 Technical Report “Timing Analysis™cccovuuuuuunnnnnnnnnn. 286
10.6 SUMMATY et 286
11 Safety and ISO 26262ocoiiiiiiii e 289
T1.1 0 BaSiCS conntt et e 289
11.2 Safety Standards, Timing, and Timing Verification 293
11.3 Tools for Timing Verificationccovvvviiiiiiiiiiiininnnnnnns 294
11,4 Le@al ASPECES...uuutttttttttttttttttttteeeeeeeeeeeeeeeeens 295
TS5 SUMMATY ..ottt eeeees 295
12 OUtloOK ..o 297
ReferenCes........cooueiiii i 299

