
grokking

Simplicity
taming complex software with
functional thinking

Eric Normand
Foreword by Guy Steele and Jessica Kerr

M A N N I N G
Shelter ISland

For online information and ordering of this and other Manning books, please visit
www .manning .com. The publisher offers discounts on this book when ordered in quantity. For more
information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road, PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also
our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

Manning Publications Co. Development editor: Jenny Stout
20 Baldwin Road Technical development editor: Alain Couniot
Shelter Island, NY 11964 Review editor: Ivan Martinović
 Production editor: Lori Weidert
 Copy editor: Michele Mitchell
 Proofreader: Melody Dolab
 Technical proofreader: Jean-François Morin
 Typesetter: Jennifer Houle
 Cover designer: Leslie Haimes

ISBN: 9781617296208
Printed in the United States of America

iii

foreword xv

preface xix

acknowledgments xxi

about this book xxiii

about the author xxvii

1 Welcome to Grokking Simplicity 1

What is functional programming? 2
The problems with the definition for practical use 3
The definition of FP confuses managers 4
We treat functional programming as a set of skills and concepts 5
Distinguishing actions, calculations, and data 6
Functional programmers distinguish code that matters when you call it 7
Functional programmers distinguish inert data

from code that does work 8
Functional programmers see actions, calculations, and data 9
The three categories of code in FP 10
How does distinguishing actions, calculations, and data help us? 11
Why is this book different from other FP books? 12
What is functional thinking? 13
Ground rules for ideas and skills in this book 14

contents

iv contents

2 Functional thinking in action 17

Welcome to Toni’s Pizza 18
Part 1: Distinguishing actions, calculations, and data 19
Organizing code by “rate of change” 20
Part 2: First-class abstractions 21
Timelines visualize distributed systems 22
Multiple timelines can execute in different orderings 23
Hard-won lessons about distributed systems 24
Cutting the timeline: Making the robots wait for each other 25
Positive lessons learned about timelines 26

Part 1: Actions, calculations, and data 29

3 Distinguishing actions, calculations, and data 31

Actions, calculations, and data 32
Actions, calculations, and data apply to any situation 33
Lessons from our shopping process 36
Applying functional thinking to new code 39
Drawing the coupon email process 42
Implementing the coupon email process 47
Applying functional thinking to existing code 54
Actions spread through code 56
Actions can take many forms 57

4 Extracting calculations from actions 61

Welcome to MegaMart.com! 62
Calculating free shipping 63
Calculating tax 64
We need to make it more testable 65
We need to make it more reusable 66
Distinguishing actions, calculations, and data 67
Functions have inputs and outputs 68

 contents v

Testing and reuse relate to inputs and outputs 69
Extracting a calculation from an action 70
Extracting another calculation from an action 73
Let’s see all of our code in one place 85

5 Improving the design of actions 87

Aligning design with business requirements 88
Aligning the function with business requirements 89
Principle: Minimize implicit inputs and outputs 91
Reducing implicit inputs and outputs 92
Giving the code a once-over 95
Categorizing our calculations 97
Principle: Design is about pulling things apart 98
Improving the design by pulling add_item() apart 99
Extracting a copy-on-write pattern 100
Using add_item() 101
Categorizing our calculations 102
Smaller functions and more calculations 106

6 Staying immutable in a mutable language 109

Can immutability be applied everywhere? 110
Categorizing operations into reads, writes, or both 111
The three steps of the copy-on-write discipline 112
Converting a write to a read with copy-on-write 113
Complete diff from mutating to copy-on-write 117
These copy-on-write operations are generalizable 118
JavaScript arrays at a glance 119
What to do if an operation is a read and a write 122
Splitting a function that does a read and write 123
Returning two values from one function 124
Reads to immutable data structures are calculations 131
Applications have state that changes over time 132
Immutable data structures are fast enough 133

vi contents

Copy-on-write operations on objects 134
JavaScript objects at a glance 135
Converting nested writes to reads 140
What gets copied? 141
Visualizing shallow copies and structural sharing 142

7 Staying immutable with untrusted code 147

Immutability with legacy code 148
Our copy-on-write code has to interact with untrusted code 149
Defensive copying defends the immutable original 150
Implementing defensive copies 151
The rules of defensive copying 152
Wrapping untrusted code 153
Defensive copying you may be familiar with 156
Copy-on-write and defensive copying compared 158
Deep copies are more expensive than shallow copies 159
Implementing deep copy in JavaScript is difficult 160
A dialogue between copy-on-write and defensive copying 162

8 Stratified design: Part 1 167

What is software design? 168
What is stratified design? 169
Developing our design sense 170
Patterns of stratified design 171
Pattern 1: Straightforward implementations 172
Three different zoom levels 186
Extracting the for loop 189
Pattern 1 Review: Straightforward implementation 198

 contents vii

9 Stratified design: Part 2 201

Patterns of stratified design 202
Pattern 2: Abstraction barrier 203
Abstraction barriers hide implementations 204
Ignoring details is symmetrical 205
Swapping the shopping cart’s data structure 206
Re-implementing the shopping cart as an object 208
The abstraction barrier lets us ignore details 209
When to use (and when not to use!) abstraction barriers 210
Pattern 2 Review: Abstraction barrier 211
Our code is more straightforward 212
Pattern 3: Minimal interface 213
Pattern 3 Review: Minimal interface 219
Pattern 4: Comfortable layers 220
Patterns of stratified design 221
What does the graph show us about our code? 222
Code at the top of the graph is easier to change 223
Testing code at the bottom is more important 225
Code at the bottom is more reusable 228
Summary: What the graph shows us about our code 229

Part 2: First-class abstractions 231

10 First-class functions: Part 1 233

Marketing still needs to coordinate with dev 235
Code smell: Implicit argument in function name 236
Refactoring: Express implicit argument 238
Recognize what is and what isn’t first-class 240
Will field names as strings lead to more bugs? 241
Will first-class fields make the API hard to change? 242
We will use a lot of objects and arrays 247
First-class functions can replace any syntax 250
For loop example: Eating and cleaning up 253
Refactoring: Replace body with callback 259

viii contents

What is this syntax? 262
Why are we wrapping the code in a function? 263

11 First-class functions: Part 2 267

One code smell and two refactorings 268
Refactoring copy-on-write 269
Refactoring copy-on-write for arrays 270
Returning functions from functions 279

12 Functional iteration 289

One code smell and two refactorings 290
MegaMart is creating a communications team 291
Deriving map() from examples 294
Functional tool: map() 295
Three ways to pass a function 297
Example: Email addresses of all customers 298
Deriving filter() from examples 301
Functional tool: filter() 302
Example: Customers with zero purchases 303
Deriving reduce() from examples 306
Functional tool: reduce() 307
Example: Concatenating strings 308
Things you can do with reduce() 313
Three functional tools compared 315

13 Chaining functional tools 317

The customer communications team continues 318
Clarifying chains, method 1: Name the steps 324
Clarifying chains, method 2: Naming the callbacks 325
Clarifying chains: Two methods compared 326
Example: Emails of customers who have made one purchase 327
Refactoring existing for loops to functional tools 332

 contents ix

Tip 1: Make data 333
Tip 2: Operate on whole array at once 334
Tip 3: Take many small steps 335
Tip 3: Take many small steps 336
Comparing functional to imperative code 337
Summary of chaining tips 338
Debugging tips for chaining 340
Many other functional tools 341
reduce() for building values 345
Getting creative with data representation 347
Line up those dots 353

14 Functional tools for nested data 355

Higher-order functions for values in objects 356
Making the field name explicit 357
Deriving update() 358
Using update() to modify values 359
Refactoring: replace get, modify, set with update() 361
Functional tool: update() 362
Visualizing values in objects 363
Visualizing nested updates 368
Applying update() to nested data 369
Deriving updateOption() 370
Deriving update2() 371
Visualizing update2() on nested objects 372
Writing incrementSizeByName() four ways 374
Deriving update3() 375
Deriving nestedUpdate() 377
The anatomy of safe recursion 382
Visualizing nestedUpdate() 383
The superpower of recursion 384
Design considerations with deep nesting 386
Abstraction barriers on deeply nested data 387
A summary of our use of higher-order functions 388

x contents

15 Isolating timelines 391

There’s a bug! 392
Now we can try to click twice fast 393
The timeline diagram shows what happens over time 395
The two fundamentals of timeline diagrams 396
Two tricky details about the order of actions 400
Drawing the add-to-cart timeline: Step 1 401
Asynchronous calls require new timelines 402
Different languages, different threading models 403
Building the timeline step-by-step 404
Drawing the add-to-cart timeline: Step 2 406
Timeline diagrams capture the two kinds of sequential code 407
Timeline diagrams capture the uncertain ordering of parallel code 408
Principles of working with timelines 409
JavaScript’s single-thread 410
JavaScript’s asynchronous queue 411
AJAX and the event queue 412
A complete asynchronous example 413
Simplifying the timeline 414
Reading our finished timeline 420
Simplifying the add-to-cart timeline diagram: Step 3 422
Review: Drawing the timeline (Steps 1–3) 424
Summary: Drawing timeline diagrams 426
Timeline diagrams side-by-side can reveal problems 427
Two slow clicks get the right result 428
Two fast clicks can get the wrong result 429
Timelines that share resources can cause problems 430
Converting a global variable to a local one 431
Converting a global variable to an argument 432
Making our code more reusable 435
Principle: In an asynchronous context, we use a final callback

instead of a return value as our explicit output 436

 contents xi

16 Sharing resources between timelines 441

Principles of working with timelines 442
The shopping cart still has a bug 443
We need to guarantee the order of the DOM updates 445
Building a queue in JavaScript 447
Principle: Use real-world sharing as inspiration 455
Making the queue reusable 456
Analyzing the timeline 461
Principle: Analyze the timeline diagram to know

if there will be problems 464
Making the queue skip 465

17 Coordinating timelines 471

Principles of working with timelines 472
There’s a bug! 473
How the code was changed 475
Identify actions: Step 1 476
Draw each action: Step 2 477
Simplify the diagram: Step 3 481
Possible ordering analysis 483
Why this timeline is faster 484
Waiting for both parallel callbacks 486
A concurrency primitive for cutting timelines 487
Using Cut() in our code 489
Uncertain ordering analysis 491
Parallel execution analysis 492
Multiple-click analysis 493
A primitive to call something just once 500
Implicit versus explicit model of time 503
Summary: Manipulating timelines 507

xii contents

18 Reactive and onion architectures 509

Two separate architectural patterns 510
Coupling of causes and effects of changes 511
What is reactive architecture? 512
Tradeoffs of the reactive architecture 513
Cells are first-class state 514
We can make ValueCells reactive 515
We can update shipping icons when the cell changes 516
FormulaCells calculate derived values 517
Mutable state in functional programming 518
How reactive architecture reconfigures systems 519
Decouples effects from their causes 520
Decoupling manages a center of cause and effect 521
Treat series of steps as pipelines 522
Flexibility in your timeline 523
Two separate architectural patterns 526
What is the onion architecture? 527
Review: Actions, calculations, and data 528
Review: Stratified design 529
Traditional layered architecture 530
A functional architecture 531
Facilitating change and reuse 532
Examine the terms used to place the rule in a layer 535
Analyze readability and awkwardness 536

19 The functional journey ahead 541

A plan for the chapter 542
We have learned the skills of professionals 543
Big takeaways 544
The ups and downs of skill acquisition 545
Parallel tracks to mastery 546
Sandbox: Start a side project 547
Sandbox: Practice exercises 548
Production: Eliminate a bug today 549

 contents xiii

Production: Incrementally improve the design 550
Popular functional languages 551
Functional languages with the most jobs 552
Functional languages by platform 552
Functional languages by learning opportunity 553
Get mathy 554
Further reading 555

index 557

