
Andrew Stellman
Jennifer Greene

Head First C#
Fourth Edition

Wouldn’t it be dreamy if
there was a C# book that was

more fun than memorizing
a dictionary? It’s probably

nothing but a fantasy…

Boston

Head First C#
Fourth Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2021 Jennifer Greene, Andrew Stellman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates
Cover Designer:		 Ellie Volckhausen
Brain Image on Spine: 	 Eric Freeman
Editors:		 	 Nicole Taché, Amanda Quinn
Proofreader:			 Rachel Head
Indexer:			 Potomac Indexing, LLC
Illustrator:			 Jose Marzan
Page Viewers:	 	 Greta the miniature bull terrier and Samosa the Pomeranian

Printing History:
November 2007: First Edition
May 2010: Second Edition
August 2013: Third Edition
December 2020: Fourth Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic, and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-491-97670-8

[LSI]										 [2020-12-18]

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

viii

Jennifer Greene studied philosophy in college
but, like everyone else in the field, couldn’t find
a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a
good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quality at a financial software company.
She’s managed teams of developers, testers, and
PMs on software projects in media and finance
since then.

Jenny has traveled all over the world to work with
different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, playing video
games, and hanging out with her huge Siberian
cat, Sascha, and her miniature bull terrier, Greta.

Andrew Stellman, despite being raised a New
Yorker, has lived in Minneapolis, Geneva, and Pittsburgh…
twice, first when he graduated from Carnegie Mellon’s
School of Computer Science, and then again when he and
Jenny were starting their consulting business and writing
their first book for O’Reilly.

Andrew’s first job after college was building software at a
record company, EMI-Capitol Records—which actually
made sense, as he went to LaGuardia High School of
Music & Art and the Performing Arts to study cello and
jazz bass guitar. He and Jenny first worked together at
a company on Wall Street that built financial software,
where he was managing a team of programmers. Over
the years he’s been a vice president at a major investment
bank, architected large-scale real-time backend systems,
managed large international software teams, and consulted
for companies, schools, and organizations, including
Microsoft, the National Bureau of Economic Research,
and MIT. He’s had the privilege of working with some
pretty amazing programmers during that time, and likes to
think that he’s learned a few things from them.

When he’s not writing books, Andrew keeps himself busy
writing useless (but fun) software, playing (and making)
both music and video games, practicing krav maga, tai chi,
and aikido, and owning a crazy Pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they first
met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in 2005. Other
Stellman and Greene books for O’Reilly include Beautiful Teams (2009), Learning Agile (2014), and their first
book in the Head First series, Head First PMP (2007), now in its fourth edition.
They founded Stellman & Greene Consulting in 2003 to build a really neat software project for scientists
studying herbicide exposure in Vietnam vets. In addition to building software and writing books, they’ve consulted
for companies and spoken at conferences and meetings of software engineers, architects, and project managers.
Learn more about them on their website, Building Better Software: https://www.stellman-greene.com.
Follow @AndrewStellman and @JennyGreene on Twitter	 Jenny and Andrew

Jenny

Andrew

Thanks for reading our book!
We really love writing about

this stuff, and we hope you get
a lot out of it…

…because
we know you’re
going to have
a great time

learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

https://www.stellman-greene.com

table of contents

ix

Table of Contents (the summary)

Let’s add some excitement to the game! The time
elapsed since the game started will appear at the
bottom of the window, constantly going up, and
only stopping after the last animal is matched.

 	 Intro	 xxxi
1	 Start building with C#: Building something great…fast!	 1
2	 Dive into C#: Statements, classes, and code	 49
	 Unity Lab 1: Explore C# with Unity	 87
3	 Objects…get oriented: Making code make sense	 117
4	 Types and references: Getting the reference	 155
 	 Unity Lab 2: Write C# Code for Unity	 213
5	 Encapsulation: Keep your privates…private	 227
6	 Inheritance: Your object’s family tree	 273
	 Unity Lab 3: GameObject Instances	 343
7	 Interfaces, casting, and “is”: Making classes keep their promises	 355
8	 Enums and collections: Organizing your data	 405
	 Unity Lab 4: User Interfaces	 453

9	 LINQ and lambdas: Get control of your data	 467

10	 Reading and writing files: Save the last byte for me!	 529
	 Unity Lab 5: Raycasting	 577
11	 Captain Amazing: The Death of the Object	 587
12	 Exception handling: Putting out fires gets old	 623
	 Unity Lab 6: Scene Navigation	 651
	 Downloadable exercise: Animal match boss battle	 661
i	 Visual Studio for Mac Learner’s Guide	 663
ii	 Code Kata: A learning guide for advanced and impatient readers 	 725

Table of Contents (the real thing)

Your brain on C#. � You’re sitting around trying to learn something, but your brain

keeps telling you all that learning isn’t important. Your brain’s saying, “Better leave room for

more important things, like which wild animals to avoid and whether nude archery is a bad

idea.” So how do you trick your brain into thinking that your life really depends on learning C#?

Intro

Who is this book for?						 xxx

We know what you’re thinking.					 xxxi

And we know what your brain is thinking.				 xxxi

Metacognition: thinking about thinking				 xxxiii

Here’s what WE did						 xxxiv

Here’s what YOU can do to bend your brain into submission		 xxxv

README							 xxxvi

The technical review team						 xli

Acknowledgments						 xli

O’Reilly online learning						 xlii

table of contents

x

Why you should learn C#					 2

Visual Studio is a tool for writing code and exploring C#	 3

Create your first project in Visual Studio			 4

Let’s build a game!					 6

Here’s how you’ll build your game				 7

Create a WPF project in Visual Studio			 8

Use XAML to design your window				 12

Design the window for your game				 13

Set the window size and title with XAML properties		 14

Add rows and columns to the XAML grid			 16

Make the rows and columns equal size			 17

Add a TextBlock control to your grid 			 18

Now you’re ready to start writing code for your game		 21

Generate a method to set up the game			 22

Finish your SetUpGame method				 24

Run your program					 26

Add your new project to source control			 30

The next step to build the game is handling mouse clicks		 33

Make your TextBlocks respond to mouse clicks		 34

Add the TextBlock_MouseDown code			 37

Make the rest of the TextBlocks call the same MouseDown
 event handler						 38

Finish the game by adding a timer				 39

Add a timer to your game’s code				 40

Use the debugger to troubleshoot the exception		 42

Add the rest of the code and finish the game			 46

Update your code in source control				 47

Build something great…fast!1 Want to build great apps…right now?�
With C#, you’ve got a modern programming language and a valuable tool at

your fingertips. And with Visual Studio, you’ve got an amazing development

environment with highly intuitive features that make coding as easy as possible. Not

only is Visual Studio a great tool for writing code, it’s also a really valuable learning

tool for exploring C#. Sound appealing? Turn the page, and let’s get coding.

start building with C#

MainWindow.xaml.cs

MainWindow.xamlMainWindow.xaml

Create the Create the
ProjectProject

Design the Design the
WindowWindow

Write C# Write C#
CodeCode

Handle Mouse Handle Mouse
ClicksClicks

Add a Game Add a Game
TimerTimer

table of contents

xi

Let’s take a closer look at the files for a console app		 50

Two classes can be in the same namespace (and file!)		 52

Statements are the building blocks for your apps		 55

Your programs use variables to work with data			 56

Generate a new method to work with variables		 58

Add code that uses operators to your method			 59

Use the debugger to watch your variables change		 60

Use operators to work with variables				 62

“if ” statements make decisions				 63

Loops perform an action over and over			 64

Use code snippets to help write loops			 67

Controls drive the mechanics of your user interfaces		 71

Create a WPF app to experiment with controls		 72

Add a TextBox control to your app				 75

Add C# code to update the TextBlock			 78

Add an event handler that only allows number input		 79

Add sliders to the bottom row of the grid			 83

Add C# code to make the rest of the controls work		 84

Statements, classes, and code
You’re not just an IDE user. You’re a developer.�
You can get a lot of work done using the IDE, but there’s only so far it can take you.

Visual Studio is one of the most advanced software development tools ever made, but

a powerful IDE is only the beginning. It’s time to dig in to C# code: how it’s structured,

how it works, and how you can take control of it…because there’s no limit to what you

can get your apps to do.

dive into C#

2

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

table of contents

xii

Welcome to your first Head First C# Unity Lab. Writing code
is a skill, and like any other skill, getting better at it takes
practice and experimentation. Unity will be a really valuable
tool for that. In this lab, you can begin practicing what you’ve
learned about C# in Chapters 1 and 2.

Unity Lab 1
Explore C# with Unity

Unity is a powerful tool for game design	 88

Download Unity Hub	 89

Use Unity Hub to create a new project	 90

Take control of the Unity layout	 91

Your scene is a 3D environment	 92

Unity games are made with GameObjects	 93

Use the Move Gizmo to move your GameObjects	 94

The Inspector shows your GameObject’s components	 95

Add a material to your Sphere GameObject	 96

Rotate your sphere	 99

Get creative!	 102

table of contents

xiii

If code is useful, it gets reused				 104

Some methods take parameters and return a value		 105

Let’s build a program that picks some cards			 106

Create your PickRandomCards console app			 107

Finish your PickSomeCards method				 108

Your finished CardPicker class				 110

Ana’s working on her next game				 113

Build a paper prototype for a classic game			 116

Up next: build a WPF version of your card picking app		 118

A StackPanel is a container that stacks other controls		 119

Reuse your CardPicker class in a new WPF app		 120

Use a Grid and StackPanel to lay out the main window		 121

Lay out your Card Picker desktop app’s window		 122

Ana can use objects to solve her problem			 126

You use a class to build an object				 127

When you create a new object from a class, it’s called
an instance of that class					 128

A better solution for Ana… brought to you by objects		 129

An instance uses fields to keep track of things			 133

Thanks for the memory					 136

What’s on your program’s mind				 137

Sometimes code can be difficult to read			 138

Use intuitive class and method names			 140

Build a class to work with some guys				 146

There’s an easier way to initialize objects with C# 		 148

Use the C# Interactive window to run C# code		 154

3 Making code make sense
Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right—and really put some thought

into how you design them—you end up with code that’s intuitive to write, and easy to

read and change.

objects…get oriented!

4 OF HEARTS
2 OF DIAMONDS
KING OF SPADES
ACE OF HEARTS
7 OF CLUBS
10 OF SPADES
JACK OF CLUBS
9 OF HEARTS
9 OF DIAMONDS
3 OF CLUBS
ACE OF SPADES

PICK SOME CARDS

table of contents

xiv

4 Getting the reference
types and references

Owen could use our help!						 156

Character sheets store different types of data on paper			 157

A variable’s type determines what kind of data it can store		 158

C# has several types for storing integers				 159

Let’s talk about strings						 161

A literal is a value written directly into your code			 162

A variable is like a data to-go cup					 165

Other types come in different sizes, too				 166

10 pounds of data in a 5-pound bag					 167

Casting lets you copy values that C# can’t automatically
 convert to another type						 168

C# does some conversion automatically				 171

When you call a method, the arguments need to be
 compatible with the types of the parameters				 172

Let’s help Owen experiment with ability scores			 176

Use the C# compiler to find the problematic line of code		 178

Use reference variables to access your objects				 186

Multiple references and their side effects				 190

Objects use references to talk to each other				 198

Arrays hold multiple values					 200

Arrays can contain reference variables				 201

null means a reference points to nothing				 203

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!		 208

What would your apps be without data? �Think about it for a minute.

Without data, your programs are…well, it’s actually hard to imagine writing code without

data. You need information from your users, and you use that to look up or produce

new information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the ins

and outs of C#’s data types and references, see how to work with data in your program,

and even learn a few more things about objects (guess what…objects are data, too!).
Character Name

Character Sheet

Level

Alignment

Charcater Class Picture

Strength

Dexterity

Intelligence

Wisdom

Charisma

Spell Saving
Throw

Poison
Saving Throw

Magic Wand
Saving Throw

Arrow Saving
Throw

ELLIWYNN

7

LAWFUL GOOD
WIZARD

9

11

10

17

15

Creating a reference
is like writing a name
on a sticky note and

sticking it to the object.
You’re using it to label
an object so you can

refer to it later.

Dog object #
1

Dog object #
2

spot

fido

rover

table of contents

xv

Unity isn’t just a powerful, cross-platform engine and editor
for building 2D and 3D games and simulations. It’s also a great
way to get practice writing C# code. In this lab, you’ll get
more practice writing C# code for a project in Unity.

Unity Lab 2
Write C# Code for Unity

C# scripts add behavior to your GameObjects	 214

Add a C# script to your GameObject	 215

Write C# code to rotate your sphere	 216

Add a breakpoint and debug your game	 218

Use the debugger to understand Time.deltaTime	 219

Add a cylinder to show where the Y axis is	 220

Add fields to your class for the rotation angle and speed	 221

Use Debug.DrawRay to explore how 3D vectors work	 222

Run the game to see the ray in the Scene view	 223

Rotate your ball around a point in the scene	 224

Use Unity to take a closer look at rotation and vectors	 225

Get creative!	 226

table of contents

xvi

5 Keep your privates…private
Ever wished for a little more privacy?�
Sometimes your objects feel the same way. Just like you don’t want anybody you don’t

trust reading your journal or paging through your bank statements, good objects don’t

let other objects go poking around their fields. In this chapter, you’re going to learn

about the power of encapsulation, a way of programming that helps you make code

that’s flexible, easy to use, and difficult to misuse. You’ll make your objects’ data

private, and add properties to protect how that data is accessed.

encapsulation

Let’s help Owen roll for damage					 228

Create a console app to calculate damage				 229

Design the XAML for a WPF version of the damage calculator		 231

The code-behind for the WPF damage calculator			 232

Tabletop talk (or maybe…dice discussion?)				 233

Let’s try to fix that bug						 234

Use Debug.WriteLine to print diagnostic information			 235

It’s easy to accidentally misuse your objects				 238

Encapsulation means keeping some of the data in a class private		 239

Use encapsulation to control access to your class’s methods and fields	 240

But is the RealName field REALLY protected?			 241

Private fields and methods can only be accessed from instances of the
same class							 242

Why encapsulation? Think of an object as a black box...			 247

Let’s use encapsulation to improve the SwordDamage class		 251

Encapsulation keeps your data safe					 252

Write a console app to test the PaintballGun class			 253

Properties make encapsulation easier				 254

Modify your Main method to use the Bullets property			 255

Auto-implemented properties simplify your code			 256

Use a private setter to create a read-only property			 257

What if we want to change the magazine size?				 258

Use a constructor with parameters to initialize properties		 259

Specify arguments when you use the new keyword			 260

RealName: "Herb Jones"

Alias: "Dash Martin"

Password: "the crow flies at midnight" SecretAgent



OBJECT

SwordDamage
Roll
MagicMultiplier
FlamingDamage
Damage

CalculateDamage
SetMagic
SetFlaming

table of contents

xvii

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across a class that almost does exactly what you want your class to do?

Found yourself thinking that if you could just change a few things, that class would be

perfect? With inheritance, you can extend an existing class so your new class gets all

of its behavior—with the flexibility to make changes to that behavior so you can tailor

it however you want. Inheritance is one of the most powerful concepts and techniques

in the C# language: with it you’ll avoid duplicate code, model the real world more

closely, and end up with apps that are easier to maintain and less prone to bugs.

inheritance

Calculate damage for MORE weapons					 274

Use a switch statement to match several candidates				 275

One more thing…can we calculate damage for a dagger? and a mace?		 277

When your classes use inheritance, you only need to write your code once		 278

Build up your class model by starting general and getting more specific		 279

How would you design a zoo simulator?					 280

Every subclass extends its base class						 285

Use a colon to extend a base class						 290

A subclass can override methods to change or replace members it inherited		 292

Some members are only implemented in a subclass				 297

Use the debugger to understand how overriding works				 298

Build an app to explore virtual and override					 300

A subclass can hide methods in the base class					 302

Use the override and virtual keywords to inherit behavior			 304

When a base class has a constructor, your subclass needs to call it			 307

It’s time to finish the job for Owen						 309

Build a beehive management system						 316

The Queen class: how she manages the worker bees				 318

The UI: add the XAML for the main window					 319

Feedback drives your Beehive Management game				 328

Some classes should never be instantiated					 332

An abstract class is an intentionally incomplete class				 334

Like we said, some classes should never be instantiated				 336

An abstract method doesn’t have a body					 337

Abstract properties work just like abstract methods				 338

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise
Eat
Sleep
Roam

Hippo

MakeNoise
Eat
Swim

Dog

MakeNoise
Fetch

Breed

Wolf

MakeNoise
HuntWithPack

Canine

Eat
Sleep

AlphaInPack
IsArboreal

table of contents

xviii

C# is an object-oriented language, and since these Head
First C# Unity Labs are all about getting practice
writing C# code, it makes sense that these labs will focus
on creating objects.

Unity Lab 3
GameObject Instances

Let’s build a game in Unity!	 344

Create a new material inside the Materials folder	 345

Spawn a billiard ball at a random point in the scene	 346

Use the debugger to understand Random.value	 347

Turn your GameObject into a prefab	 348

Create a script to control the game	 349

Attach the script to the Main Camera	 350

Press Play to run your code	 351

Use the Inspector to work with GameObject instances 	 352

Use physics to keep balls from overlapping	 353

Get creative!	 354

table of contents

xix

7 Making classes keep their promises

Actions speak louder than words.�
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations…or the compiler will break its kneecaps, see?

interfaces, casting, and “is”

The beehive is under attack!					 356

We can use casting to call the DefendHive method...			 357

An interface defines methods and properties that a class must implement...	 358

Get a little practice using interfaces					 360

You can’t instantiate an interface, but you can reference an interface	 366

Interface references are ordinary object references			 369

The RoboBee 4000 can do a worker bee’s job without using
valuable honey							 370

The IWorker's Job property is a hack				 374

Use “is” to check the type of an object				 375

Use “is” to access methods in a subclass				 376

What if we want different animals to swim or hunt in packs?		 378

Use interfaces to work with classes that do the same job			 379

Safely navigate your class hierarchy with “is”				 380

C# has another tool for safe type conversion: the “as” keyword		 381

Use upcasting and downcasting to move up and down a class hierarchy	 382

Upcasting turns your CoffeeMaker into an Appliance			 384

Upcasting and downcasting work with interfaces, too			 386

Downcasting turns your Appliance back into a CoffeeMaker		 385

Interfaces can inherit from other interfaces				 388

Interfaces can have static members					 395

Default implementations give bodies to interface methods		 396

Add a ScareAdults method with a default implementation		 397

Data binding updates WPF controls automatically			 399

Modify the Beehive Management System to use data binding		 400

Polymorphism means that one object can take many different forms	 403

Queen object

HiveDefender
 o

bj
ec

t

Defend
the hive at all

costs.

Yes,
ma’am!

table of contents

xx

8 Organizing your data
When it rains, it pours.�
In the real world, you don’t receive your data in tiny little bits and pieces. No, your data’s

going to come at you in loads, piles, and bunches. You’ll need some pretty powerful tools

to organize all of it, and that’s where enums and collections come in. Enums are types

that let you define valid values to categorize your data. Collections are special objects that

store many values, letting you store, sort, and manage all the data that your programs

need to pore through. That way, you can spend your time thinking about writing programs

to work with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data			 406

Enums let you work with a set of valid values				 407

Enums let you represent numbers with names 				 408

We could use an array to create a deck of cards…			 411

Lists make it easy to store collections of…anything			 413

Lists are more flexible than arrays					 414

Let's build an app to store shoes					 417

Generic collections can store any type				 420

Collection initializers are similar to object initializers			 426

Let’s create a List of Ducks					 427

Lists are easy, but SORTING can be tricky				 428

IComparable<Duck> helps your list sort its ducks			 429

Use IComparer to tell your List how to sort				 430

Create an instance of your comparer object				 431

Overriding a ToString method lets an object describe itself 		 435

Update your foreach loops to let your Ducks and Cards
write themselves to the console					 436

You can upcast an entire list using IEnumerable<T>			 440

Use a Dictionary to store keys and values				 442

The Dictionary functionality rundown				 443

Build a program that uses a dictionary				 444

And yet MORE collection types…					 445

A queue is FIFO—first in, first out					 446

A stack is LIFO—last in, first out					 447

Downloadable exercise: Two Decks					 452The rarely-played duke of oxen card

table of contents

xxi

In the last Unity Lab you started to build a game, using a
prefab to create GameObject instances that appear at random
points in 3D space and fly in circles. This Unity Lab picks up
where the last one left off, allowing you to apply what you’ve
learned about interfaces in C# and more.

Unity Lab 4
User Interfaces

Add a score that goes up when the player clicks a ball	 454

Add two different modes to your game	 455

Add game mode to your game	 456

Add a UI to your game	 458

Set up the Text that will display the score in the UI	 459

Add a button that calls a method to start the game	 460

Make the Play Again button and Score Text work	 461

Finish the code for the game	 462

Get creative!	 466

This screenshot shows the
game in its running mode. Balls
are added and the player can

click on them to score.

When the last ball is added, the
game switches to its Game Over

mode. The Play Again button pops
up and no more balls get added.

table of contents

xxii

9 Get control of your data
LINQ and lambdas

Jimmy’s a Captain Amazing super-fan...				 468

Use LINQ to query your collections					 470

LINQ works with any IEnumerable<T>				 472

LINQ’s query syntax						 475

LINQ works with objects						 477

Use a LINQ query to finish the app for Jimmy				 478

The var keyword lets C# figure out variable types for you		 480

LINQ queries aren’t run until you access their results			 487

Use a group query to separate your sequence into groups		 488

Use join queries to merge data from two sequences			 491

Use the new keyword to create anonymous types 			 492

Add a unit test project to Jimmy’s comic collection app			 502

Write your first unit test 						 503

Write a unit test for the GetReviews method				 505

Write unit tests to handle edge cases and weird data			 506

Use the => operator to create lambda expressions			 508

A lambda test drive						 509

Refactor a clown with lambdas					 510

Use the ?: operator to make your lambdas make choices			 513

Lambda expressions and LINQ					 514

LINQ queries can be written as chained LINQ methods			 515

Use the => operator to create switch expressions			 517

Explore the Enumerable class					 521

Create an enumerable sequence by hand				 522

Use yield return to create your own sequences				 523

Use yield return to refactor ManualSportSequence			 524

Downloadable exercise: Go Fish!					 528

Clause #2:
Include only

certain values
Clause #3:
Order the
elements

0 12 36 13 8 36 13 12 8 0

You’re ready for a whole new world of app development.�
Using WinForms to build Windows Desktop apps is a great way to learn important C#

concepts, but there’s so much more you can do with your programs. In this chapter,

you’ll use XAML to design your Windows Store apps, you’ll learn how to build pages

to fit any device, integrate your data into your pages with data binding, and use

Visual Studio to cut through the mystery of XAML pages by exploring the objects

created by your XAML code.

table of contents

xxiii

Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

10 Save the last byte for me!
reading and writing files

.NET uses streams to read and write data				 530

Different streams read and write different things			 531

A FileStream reads and writes bytes in a file				 532

Write text to a file in three simple steps				 533

The Swindler launches another diabolical plan			 534

Use a StreamReader to read a file					 537

Data can go through more than one stream				 538

Use the static File and Directory classes to work with files and directories	 542

IDisposable makes sure objects are closed properly			 545

Use a MemoryStream to stream data to memory			 547

What happens to an object when it’s serialized?			 553

But what exactly IS an object’s state? What needs to be saved?		 554

Use JsonSerialization to serialize your objects				 556

JSON only includes data, not specific C# types			 559

Next up: we’ll take a deep dive into our data				 561

C# strings are encoded with Unicode				 563

Visual Studio works really well with Unicode				 565

.NET uses Unicode to store characters and text 			 566

C# can use byte arrays to move data around				 568

Use a BinaryWriter to write binary data				 569

Use BinaryReader to read the data back in				 570

A hex dump lets you see the bytes in your files				 572

Use Stream.Read to read bytes from a stream				 574

Modify your hex dumper to use command-line arguments		 575

Downloadable exercise: Hide and Seek				 576

Eureka!
69 117 114 101 107 97 33

69 117 114 101

table of contents

xxiv

When you set up a scene in Unity, you’re creating a virtual 3D
world for the characters in your game to move around in. But
in most games, things aren’t directly controlled by the player.
So how do these objects find their way around a scene? In this
lab, we’ll look at how C# can help.

Unity Lab 5
Raycasting

Create a new Unity project and start to set up the scene	 578

Set up the camera	 579

Create a GameObject for the player	 580

Introducing Unity’s navigation system	 581

Set up the NavMesh	 582

Make your player automatically navigate the play area	 583

The camera is pointing down, so
this box is the viewport. The
X shows the location where the
user clicked on the screen.

The method casts a ray up to
100 units long that starts at
the camera and passes through
point that the user clicked.

The ray hits the floor here.

table of contents

xxv

The life and death of an object					 590

Use the GC class (with caution) to force garbage collection		 591

Your last chance to DO something…your object’s finalizer 		 592

When EXACTLY does a finalizer run?				 593

Finalizers can’t depend on other objects				 595

A struct looks like an object…					 599

Values get copied; references get assigned 				 600

Structs are value types; objects are reference types			 601

The stack vs. the heap: more on memory				 603

Use out parameters to make a method return more than one value 	 606

Pass by reference using the ref modifier 				 607

Use optional parameters to set default values				 608

A null reference doesn’t refer to any object				 609

Non-nullable reference types help you avoid NREs			 610

The null-coalescing operator ?? helps with nulls			 611

Nullable value types can be null…and handled safely			 612

“Captain” Amazing…not so much					 613

Extension methods add new behavior to EXISTING classes		 617

Extending a fundamental type: string				 619

CAPTAIN AMAZINGCAPTAIN AMAZING
THE DEATH THE DEATH

OF THE OBJECTOF THE OBJECT
Head First C#

Chapter
11

Four
bucks

Just…need to do...
- gasp -

one…last…thing…

table of contents

xxvi

12 Putting out fires gets old
exception handling

Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession. But you’re

still getting panicked phone calls in the middle of the night from work because your

program crashes, or doesn’t behave like it’s supposed to. Nothing pulls you

out of the programming groove like having to fix a strange bug…but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even plan for those problems, and keep things running when they happen.

Exception obj
ec

t

int[] anArray = {3, 4, 1, 11};
int aValue = anArray[15];

Your class, now with
exception handlingexception handlinguser

Now your program’s more robust!

public class Data {

 public void
 Process(Input i) {
 try {
 if (i.IsBad()) {
 explode();
 } catch {
 Handle It();
 }
 }
 }

Wow, this program’s really stable!

Uh-oh! what
the heck

happened?

An object

Your hex dumper reads a filename from the command line		 624

When your program throws an exception, the CLR generates
an Exception object					 628

All Exception objects inherit from System.Exception		 629

There are some files you just can’t dump			 632

What happens when a method you want to call is risky?		 633

Handle exceptions with try and catch				 634

Use the debugger to follow the try/catch flow			 635

If you have code that ALWAYS needs to run,
use a finally block						 636

Catch-all exceptions handle System.Exception 			 637

Use the right exception for the situation				 642

Exception filters help you create precise handlers			 646

The worst catch block EVER: catch-all plus comments		 648

Temporary solutions are OK (temporarily)			 649

table of contents

xxvii

In the last Unity Lab, you created a scene with a floor (a plane)
and a player (a sphere nested under a cylinder), and you used
a NavMesh, a NavMesh Agent, and raycasting to get your
player to follow your mouse clicks around the scene. In this
lab, you’ll add to the scene with the help of C#.

Unity Lab 6
Scene Navigation

Let’s pick up where the last Unity Lab left off 	 652

Add a platform to your scene	 653

Use bake options to make the platform walkable	 654

Include the stairs and ramp in your NavMesh	 655

Fix height problems in the NavMesh	 657

Add a NavMesh Obstacle	 658

Add a script to move the obstacle up and down	 659

Get creative!	 660

This NavMesh Obstacle carves a moving hole in the NavMesh that
prevents the Player going up the ramp. You’ll add a script that

lets the user drag it up and down to block and unblock the ramp.

table of contents

xxviii

i

ii

Visual Studio for Mac Learner’s Guide

A learning guide for advanced and
impatient readers

appendix i: ASP.NET Core Blazor projects

appendix ii: Code Kata

Why you should learn C#					 664

Create your first project in Visual Studio for Mac		 666

Let’s build a game!					 670

Create a Blazor WebAssembly App in Visual Studio		 672

Run your Blazor web app in a browser			 674

Start writing code for your game				 676

Finish creating your emoji list and diplay it in the app		 680

Shuffle the animals so they’re in a random order		 682

You’re running your game in the debugger	 		 684

Add your new project to source control 			 688

Add C# code to handle mouse clicks	 		 689

Add click event handlers to your buttons			 690

Test your event handler	 				 692

Use the debugger to troubleshoot the problem			 693

Track down the bug that’s causing the problem		 696

Add code to reset the game when the player wins		 698

Add a timer to your game’s code				 702

Clean up the navigation menu		 		 704

Controls drive the mechanics of your user interfaces		 706

Create a new Blazor WebAssemply App project		 707

Add a page with a slider control				 708

Add text input to your app				 710

Add color and date pickers to your app			 713

Build a Blazor version of your card picking game		 714

The page is laid out with rows and columns			 716

The slider uses data binding to update a variable		 717

Welcome to Sloppy Joe’s Budget House o’Discount Sandwiches!	 720

