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is a skill, and like any other skill, getting better at it takes 
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learned about C# in Chapters 1 and 2.
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Every program you write solves a problem.� 
When you’re building a program, it’s always a good idea to start by thinking about what 

problem your program’s supposed to solve. That’s why objects are really useful. They 

let you structure your code based on the problem it’s solving so that you can spend your 

time thinking about the problem you need to work on rather than getting bogged down in 

the mechanics of writing code. When you use objects right—and really put some thought 

into how you design them—you end up with code that’s intuitive to write, and easy to 

read and change.
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What would your apps be without data? �Think about it for a minute. 

Without data, your programs are…well, it’s actually hard to imagine writing code without 

data. You need information from your users, and you use that to look up or produce 

new information to give back to them. In fact, almost everything you do in programming 

involves working with data in one way or another. In this chapter, you’ll learn the ins 

and outs of C#’s data types and references, see how to work with data in your program, 

and even learn a few more things about objects (guess what…objects are data, too!).
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is like writing a name 
on a sticky note and 

sticking it to the object. 
You’re using it to label 
an object so you can 

refer to it later.

Dog object #
1
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2

spot

fido

rover
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Unity isn’t just a powerful, cross-platform engine and editor 
for building 2D and 3D games and simulations. It’s also a great 
way to get practice writing C# code. In this lab, you’ll get 
more practice writing C# code for a project in Unity.

Unity Lab 2
Write C# Code for Unity
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5 Keep your privates…private
Ever wished for a little more privacy?� 
Sometimes your objects feel the same way. Just like you don’t want anybody you don’t 

trust reading your journal or paging through your bank statements, good objects don’t 

let other objects go poking around their fields. In this chapter, you’re going to learn 

about the power of encapsulation, a way of programming that helps you make code 

that’s flexible, easy to use, and difficult to misuse. You’ll make your objects’ data 

private, and add properties to protect how that data is accessed.

encapsulation
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Design the XAML for a WPF version of  the damage calculator		  231
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RealName: "Herb Jones"

Alias: "Dash Martin"

Password: "the crow flies at midnight"  SecretAgent



OBJECT

SwordDamage
Roll
MagicMultiplier
FlamingDamage
Damage

CalculateDamage
SetMagic
SetFlaming



table of contents

xvii

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across a class that almost does exactly what you want your class to do? 

Found yourself thinking that if you could just change a few things, that class would be 

perfect? With  inheritance, you can extend an existing class so your new class gets all 

of its behavior—with the flexibility to make changes to that behavior so you can tailor 

it however you want. Inheritance is one of the most powerful concepts and techniques 

in the C# language: with it you’ll avoid duplicate code, model the real world more 

closely, and end up with apps that are easier to maintain and less prone to bugs.

inheritance
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Use a switch statement to match several candidates				    275

One more thing…can we calculate damage for a dagger? and a mace?		  277
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Animal
Picture
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Boundaries
Location
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C# is an object-oriented language, and since these Head 
First C# Unity Labs are all about getting practice 
writing C# code, it makes sense that these labs will focus 
on creating objects. 

Unity Lab 3
GameObject Instances

Let’s build a game in Unity!	 344

Create a new material inside the Materials folder	 345

Spawn a billiard ball at a random point in the scene	 346

Use the debugger to understand Random.value	 347
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Press Play to run your code	 351

Use the Inspector to work with GameObject instances 	 352

Use physics to keep balls from overlapping	 353

Get creative!	 354
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7 Making classes keep their promises

Actions speak louder than words.� 
Sometimes you need to group your objects together based on the things they can 

do rather than the classes they inherit from. That’s where interfaces come in—they 

let you work with any class that can do the job. But with great power comes great 

responsibility, and any class that implements an interface must promise to fulfill all of 

its obligations…or the compiler will break its kneecaps, see?

interfaces, casting, and “is”

The beehive is under attack!					     356

We can use casting to call the DefendHive method...			   357
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Queen object

HiveDefender
 o

bj
ec

t

Defend 
the hive at all 

costs.

Yes, 
ma’am!
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8 Organizing your data
When it rains, it pours.� 
In the real world, you don’t receive your data in tiny little bits and pieces. No, your data’s 

going to come at you in loads, piles, and bunches. You’ll need some pretty powerful tools 

to organize all of it, and that’s where enums and collections come in. Enums are types 

that let you define valid values to categorize your data. Collections are special objects that 

store many values, letting you store, sort, and manage all the data that your programs 

need to pore through. That way, you can spend your time thinking about writing programs 

to work with your data, and let the collections worry about keeping track of it for you.

enums and collections
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Downloadable exercise: Two Decks					     452The rarely-played duke of oxen card
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In the last Unity Lab you started to build a game, using a 
prefab to create GameObject instances that appear at random 
points in 3D space and fly in circles. This Unity Lab picks up 
where the last one left off, allowing you to apply what you’ve 
learned about interfaces in C# and more. 

Unity Lab 4
User Interfaces

Add a score that goes up when the player clicks a ball	 454

Add two different modes to your game	 455

Add game mode to your game	 456

Add a UI to your game	 458

Set up the Text that will display the score in the UI	 459

Add a button that calls a method to start the game	 460

Make the Play Again button and Score Text work	 461

Finish the code for the game	 462

Get creative!	 466

This screenshot shows the 
game in its running mode. Balls 
are added and the player can 

click on them to score.

When the last ball is added, the 
game switches to its Game Over 

mode. The Play Again button pops 
up and no more balls get added.
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9 Get control of your data
LINQ and lambdas

Jimmy’s a Captain Amazing super-fan...				    468
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Clause #2: 
Include only 

certain values
Clause #3: 
Order the 
elements

0 12 36 13 8 36 13 12 8 0

You’re ready for a whole new world of  app development.� 
Using WinForms to build Windows Desktop apps is a great way to learn important C# 

concepts, but there’s so much more you can do with your programs. In this chapter, 

you’ll use XAML to design your Windows Store apps, you’ll learn how to build pages 

to fit any device, integrate your data into your pages with data binding, and use 

Visual Studio to cut through the mystery of XAML pages by exploring the objects 

created by your XAML code.
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Sometimes it pays to be a little persistent.� 
So far, all of your programs have been pretty short-lived. They fire up, run for 

a while, and shut down. But that’s not always enough, especially when you’re 

dealing with important information. You need to be able to save your work. In 

this chapter, we’ll look at how to write data to a file, and then how to read that 

information back in from a file. You’ll learn about the .NET stream classes, 

and also take a look at the mysteries of hexadecimal and binary.

10 Save the last byte for me!
reading and writing files

.NET uses streams to read and write data				    530

Different streams read and write different things			   531

A FileStream reads and writes bytes in a file				    532

Write text to a file in three simple steps				    533

The Swindler launches another diabolical plan			   534

Use a StreamReader to read a file					     537

Data can go through more than one stream				    538

Use the static File and Directory classes to work with files and directories	 542

IDisposable makes sure objects are closed properly			   545

Use a MemoryStream to stream data to memory			   547

What happens to an object when it’s serialized?			   553

But what exactly IS an object’s state? What needs to be saved?		  554

Use JsonSerialization to serialize your objects				    556

JSON only includes data, not specific C# types			   559

Next up: we’ll take a deep dive into our data				    561

C# strings are encoded with Unicode				    563

Visual Studio works really well with Unicode				    565

.NET uses Unicode to store characters and text 			   566

C# can use byte arrays to move data around				    568

Use a BinaryWriter to write binary data				    569

Use BinaryReader to read the data back in				    570

A hex dump lets you see the bytes in your files				    572

Use Stream.Read to read bytes from a stream				    574

Modify your hex dumper to use command-line arguments		  575

Downloadable exercise: Hide and Seek				    576

Eureka!
69 117 114 101 107 97 33

69 117 114 101 
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When you set up a scene in Unity, you’re creating a virtual 3D 
world for the characters in your game to move around in. But 
in most games, things aren’t directly controlled by the player. 
So how do these objects find their way around a scene? In this 
lab, we’ll look at how C# can help.

Unity Lab 5
Raycasting

Create a new Unity project and start to set up the scene	 578

Set up the camera	 579

Create a GameObject for the player	 580

Introducing Unity’s navigation system	 581

Set up the NavMesh	 582

Make your player automatically navigate the play area	 583

The camera is pointing down, so 
this box is the viewport. The 
X shows the location where the 
user clicked on the screen.

The method casts a ray up to 
100 units long that starts at 
the camera and passes through 
point that the user clicked.

The ray hits the floor here.
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The life and death of  an object					     590

Use the GC class (with caution) to force garbage collection		  591

Your last chance to DO something…your object’s finalizer 		  592

When EXACTLY does a finalizer run?				    593

Finalizers can’t depend on other objects				    595

A struct looks like an object…					     599

Values get copied; references get assigned 				    600

Structs are value types; objects are reference types			   601

The stack vs. the heap: more on memory				    603

Use out parameters to make a method return more than one value 	 606

Pass by reference using the ref  modifier 				    607

Use optional parameters to set default values				    608

A null reference doesn’t refer to any object				    609

Non-nullable reference types help you avoid NREs			   610

The null-coalescing operator ?? helps with nulls			   611

Nullable value types can be null…and handled safely			   612

“Captain” Amazing…not so much					     613

Extension methods add new behavior to EXISTING classes		  617

Extending a fundamental type: string				    619

CAPTAIN AMAZINGCAPTAIN AMAZING
THE DEATH THE DEATH 

OF THE OBJECTOF THE OBJECT
Head First C#

Chapter 
11

Four 
bucks

Just…need to do...
- gasp -

one…last…thing…
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12 Putting out fires gets old
exception handling

Programmers aren’t meant to be firefighters.� 
You’ve worked your tail off, waded through technical manuals and a few engaging 

Head First books, and you’ve reached the pinnacle of your profession. But you’re 

still getting panicked phone calls in the middle of the night from work because your 

program crashes, or doesn’t behave like it’s supposed to. Nothing pulls you 

out of the programming groove like having to fix a strange bug…but with exception 

handling, you can write code to deal with problems that come up. Better yet, you 

can even plan for those problems, and keep things running when they happen.

Exception obj
ec

t

 
int[] anArray = {3, 4, 1, 11}; 
int aValue = anArray[15]; 

Your class, now with 
exception handlingexception handlinguser

Now your program’s more robust!

public class Data {

  public void   
  Process(Input i) { 
    try { 
     if (i.IsBad()) { 
       explode(); 
    } catch { 
      Handle It(); 
    } 
     } 
  }

Wow, this program’s really stable!

Uh-oh! what 
the heck 

happened?

An object

Your hex dumper reads a filename from the command line		  624

When your program throws an exception, the CLR generates  
an Exception object					     628

All Exception objects inherit from System.Exception		  629

There are some files you just can’t dump			   632

What happens when a method you want to call is risky?		  633

Handle exceptions with try and catch				    634

Use the debugger to follow the try/catch flow			   635

If  you have code that ALWAYS needs to run,  
use a finally block						      636

Catch-all exceptions handle System.Exception 			   637

Use the right exception for the situation				   642

Exception filters help you create precise handlers			   646

The worst catch block EVER: catch-all plus comments		  648

Temporary solutions are OK (temporarily)			   649
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In the last Unity Lab, you created a scene with a floor (a plane) 
and a player (a sphere nested under a cylinder), and you used 
a NavMesh, a NavMesh Agent, and raycasting to get your 
player to follow your mouse clicks around the scene. In this 
lab, you’ll add to the scene with the help of C#.

Unity Lab 6
Scene Navigation

Let’s pick up where the last Unity Lab left off 	 652

Add a platform to your scene	 653

Use bake options to make the platform walkable	 654

Include the stairs and ramp in your NavMesh	 655

Fix height problems in the NavMesh	 657

Add a NavMesh Obstacle	 658

Add a script to move the obstacle up and down	 659

Get creative!	 660

This NavMesh Obstacle carves a moving hole in the NavMesh that 
prevents the Player going up the ramp. You’ll add a script that 

lets the user drag it up and down to block and unblock the ramp.
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i

ii

Visual Studio for Mac Learner’s Guide

A learning guide for advanced and 
impatient readers

appendix i: ASP.NET Core Blazor projects 

appendix ii: Code Kata 

Why you should learn C#					    664

Create your first project in Visual Studio for Mac		  666

Let’s build a game!					     670

Create a Blazor WebAssembly App in Visual Studio		  672

Run your Blazor web app in a browser			   674

Start writing code for your game				    676

Finish creating your emoji list and diplay it in the app		  680

Shuffle the animals so they’re in a random order		  682

You’re running your game in the debugger	 		  684

Add your new project to source control 			   688

Add C# code to handle mouse clicks	 		  689

Add click event handlers to your buttons			   690

Test your event handler	 				    692

Use the debugger to troubleshoot the problem			  693

Track down the bug that’s causing the problem		  696

Add code to reset the game when the player wins		  698

Add a timer to your game’s code				    702

Clean up the navigation menu		  		  704

Controls drive the mechanics of  your user interfaces		  706

Create a new Blazor WebAssemply App project		  707

Add a page with a slider control				    708

Add text input to your app				    710

Add color and date pickers to your app			   713

Build a Blazor version of  your card picking game		  714

The page is laid out with rows and columns			   716

The slider uses data binding to update a variable		  717

Welcome to Sloppy Joe’s Budget House o’Discount Sandwiches!	 720




