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1 Welcome to Design Patterns
Someone has already solved your problems. In this 

chapter, you’ll learn why (and how) you can exploit the wisdom and lessons 

learned by other developers who’ve been down the same design problem road 

and survived the trip. Before we’re done, we’ll look at the use and benefits 

of design patterns, look at some key object-oriented (OO) design principles, 

and walk through an example of how one pattern works. The best way to use 

patterns is to load your brain with them and then recognize places in your 

designs and existing applications where you can apply them. Instead of code 

reuse, with patterns you get experience reuse.
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The Weather Monitoring application overview   39
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2 Keeping your Objects in the Know
You don’t want to miss out when something 
interesting happens, do you? We’ve got a pattern that keeps your 

objects in the know when something they care about happens. It’s the Observer 

Pattern. It is one of the most commonly used design patterns, and it’s incredibly 

useful. We’re going to look at all kinds of interesting aspects of Observer, like its 

one-to-many relationships and loose coupling. And, with those concepts in mind, 

how can you help but be the life of the Patterns Party? 

the Observer Pattern
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3 Decorating Objects
Just call this chapter “Design Eye for the Inheritance 
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how 

to decorate your classes at runtime using a form of object composition. Why? 

Once you know the techniques of decorating, you’ll be able to give your (or 

someone else’s) objects new responsibilities without making any code changes 

to the underlying classes.

the Decorator Pattern

I used to think real men 
subclassed everything. That was until 
I learned the power of extension 
at runtime, rather than at compile 
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4 Baking with OO Goodness
Get ready to bake some loosely coupled OO designs. 
There is more to making objects than just using the new operator. You’ll 

learn that instantiation is an activity that shouldn’t always be done in public 

and can often lead to coupling problems. And we don’t want that, do we? 

Find out how Factory Patterns can help save you from embarrassing 

dependencies.

the Factory Pattern
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how to create the right 
objects for their region.
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5 One-of-a-Kind Objects
Our next stop is the Singleton Pattern, our ticket to 
creating one-of-a-kind objects for which there is only 
one instance, ever.  You might be happy to know that of all patterns, 

the Singleton is the simplest in terms of its class diagram; in fact, the diagram 

holds just a single class! But don’t get too comfortable; despite its simplicity 

from a class design perspective, it’s going to require some deep object-oriented 

thinking in its implementation. So put on that thinking cap, and let’s get going.

the Singleton Pattern
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6 Encapsulating Invocation

In this chapter, we take encapsulation to a whole new 
level: we’re going to encapsulate method invocation. 
That’s right—by encapsulating method invocation, we can crystallize pieces 

of computation so that the object invoking the computation doesn’t need to 

worry about how to do things, it just uses our crystallized method to get it 

done. We can also do some wickedly smart things with these encapsulated 

method invocations, like save them away for logging or reuse them to 

implement undo functionality in our code. 

the Command Pattern
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7 Being Adaptive

In this chapter we’re going to attempt such impossible 
feats as putting a square peg in a round hole. Sound 
impossible? Not when we have Design Patterns. Remember the Decorator 
Pattern? We wrapped objects to give them new responsibilities. Now we’re 
going to wrap some objects with a different purpose: to make their interfaces look 
like something they’re not. Why would we do that? So we can adapt a design 
expecting one interface to a class that implements a different interface. That’s not 
all; while we’re at it, we’re going to look at another pattern that wraps objects to 
simplify their interface.

the Adapter and Facade Patterns
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8 Encapsulating Algorithms
We’ve encapsulated object creation, method invocation, 
complex interfaces, ducks, pizzas…what could be next?  
We’re going to get down to encapsulating pieces of algorithms so that subclasses 

can hook themselves right into a computation anytime they want. We’re even 

going to learn about a design principle inspired by Hollywood. Let’s get started…

the Template Method Pattern
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9 Well-Managed Collections

There are lots of  ways to stuff  objects into a collection.
Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its 

own advantages and tradeoffs. But at some point your clients are going to want 

to iterate over those objects, and when they do, are you going to show them your 

implementation? We certainly hope not! That just wouldn’t be professional. Well, you 

don’t have to risk your career; in this chapter you’re going to see how you can allow 

your clients to iterate through your objects without ever getting a peek at how you 

store your objects. You’re also going to learn how to create some super collections of 

objects that can leap over some impressive data structures in a single bound. And if 

that’s not enough, you’re also going to learn a thing or two about object responsibility.   

the Iterator and Composite Patterns
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10 The State of Things

A little-known fact: the Strategy and State Patterns were 
twins separated at birth. You’d think they’d live similar lives, but the Strategy 

Pattern went on to create a wildly successful business around interchangeable algorithms, 

while State took the perhaps more noble path of helping objects to control their behavior 

by changing their internal state. As different as their paths became, however, underneath 

you’ll find almost precisely the same design. How can that be? As you’ll see, Strategy 

and State have very different intents. First, let’s dig in and see what the State Pattern is all 

about, and then we’ll return to explore their relationship at the end of the chapter.

the State Pattern
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11 Controlling Object Access

Ever play good cop, bad cop?  You’re the good cop and you provide 

all your services in a nice and friendly manner, but you don’t want everyone asking 

you for services, so you have the bad cop control access to you. That’s what proxies 

do: control and manage access. As you’re going to see, there are lots of ways in 

which proxies stand in for the objects they proxy. Proxies have been known to haul 

entire method calls over the internet for their proxied objects; they’ve also been 

known to patiently stand in for some pretty lazy objects. 

the Proxy Pattern
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request()

RealSubject
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Proxy
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12 Patterns of Patterns

Who would have ever guessed that Patterns could work 
together?  You’ve already witnessed the acrimonious Fireside Chats (and 
you haven’t even seen the Pattern Death Match pages that the editor forced us to 
remove from the book), so who would have thought patterns can actually get along 
well together? Well, believe it or not, some of the most powerful OO designs use 
several patterns together. Get ready to take your pattern skills to the next level; it’s 
time for compound patterns.
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13 Patterns in the Real World
Ahhhh, now you’re ready for a bright new world filled 
with Design Patterns. But, before you go opening all those new doors 
of opportunity, we need to cover a few details that you’ll encounter out in the 
real world—that’s right, things get a little more complex than they are here 
in Objectville. Come along, we’ve got a nice guide to help you through the 
transition…

better living with patterns

Design Pattern defined    565

Looking more closely at the Design Pattern definition 567

May the force be with you    568

So you wanna be a Design Patterns writer  573

Organizing Design Patterns    575

Thinking in Patterns    580
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Annihilating evil with Anti-Patterns   592

Tools for your Design Toolbox   594

Leaving Objectville     595

Erich Gamma

John Vlissides

Richard 
Helm

Ralph 
Johnson

Gang of Four

The Objectville Guide to 

    Better Living with Design Patterns

Please accept our handy guide of tips & tricks for living with patterns in the real 

world. In this guide you will:

b  Learn the all too common misconceptions about the definition of a “Design 

Pattern.”

b  Discover those nifty Design Pattern Catalogs and why you just have to get 

one.

b  Avoid the embarrassment of using a Design Pattern at the wrong time.

b  Learn how to keep patterns in classifications where they belong.

b  See that discovering patterns isn’t just for the gurus; read our quick How To 

and become a patterns writer too.

b  Be there when the true identify of the mysterious Gang of Four is revealed.

b  Keep up with the neighbors – the coffee table books any patterns user must 

own.

b  Learn to train your Design Patterns mind like a Zen master.

b  Win friends and influence developers by improving your patterns vocabulary.



14 Appendix: Leftover Patterns

Not everyone can be the most popular. A lot has changed in the 

last 25+ years. Since Design Patterns: Elements of Reusable Object-Oriented 

Software first came out, developers have applied these patterns thousands of 

times. The patterns we summarize in this appendix are full-fledged, card-carrying, 

official GoF patterns, but aren’t used as often as the patterns we’ve explored so 

far. But these patterns are awesome in their own right, and if your situation calls for 

them, you should apply them with your head held high. Our goal in this appendix is 

to give you a high-level idea of what these patterns are all about. 
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All these composite 
classes have to do is add 
a getState() method 
(and not worry about 
exposing themselves).

The Client asks 
the Visitor to get 
information from the 
Composite structure… 
New methods can be 
added to the Visitor 
without affecting the 
Composite.

The Visitor needs to be able to call 
getState() across classes, and this is 
where you can add new methods for 
the client to use.

The Traverser knows how to 
guide the Visitor through 
the Composite structure.
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