
Beijing • Boston • Farnham • Sebastopol • Tokyo

Eric Freeman
Elisabeth Robson

Head First
Design Patterns

Wouldn’t it be dreamy
if there was a Design Patterns
book that was more fun than

going to the dentist, and more
revealing than an IRS form? It’s

probably just a fantasy…

Intro
Your brain on Design Patterns. Here you are trying to learn something,

while here your brain is doing you a favor by making sure the learning doesn’t stick. Your

brain’s thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing Design Patterns?

Who is this book for? xxvi

We know what you’re thinking. xxvii

And we know what your brain is thinking. xxvii

We think of a “Head First” reader as a learner. xxviii

Metacognition: thinking about thinking xxix

Here’s what WE did xxx

Here’s what YOU can do to bend your brain into submission xxxi

Read Me xxxii

Tech Reviewers xxxiv

Acknowledgments xxxv

Table of Contents (summary)
 Intro xxv
1 Welcome to Design Patterns: intro to Design Patterns 1
2 Keeping your Objects in the Know: the Observer Pattern 37
3 Decorating Objects: the Decorator Pattern 79
4 Baking with OO Goodness: the Factory Pattern 109
5 One-of-a-Kind Objects: the Singleton Pattern 169
6 Encapsulating Invocation: the Command Pattern 191
7 Being Adaptive: the Adapter and Facade Patterns 237
8 Encapsulating Algorithms: theTemplate Method Pattern 277
9 Well-Managed Collections: the Iterator and Composite Patterns 317
10 The State of Things: the State Pattern 381
11 Controlling Object Access: the Proxy Pattern 425
12 Patterns of Patterns: compound patterns 493
13 Patterns in the Real World: better living with patterns 563
14 Appendix: Leftover Patterns 597

Table of Contents (the real thing)

table of contents

1 Welcome to Design Patterns
Someone has already solved your problems. In this

chapter, you’ll learn why (and how) you can exploit the wisdom and lessons

learned by other developers who’ve been down the same design problem road

and survived the trip. Before we’re done, we’ll look at the use and benefits

of design patterns, look at some key object-oriented (OO) design principles,

and walk through an example of how one pattern works. The best way to use

patterns is to load your brain with them and then recognize places in your

designs and existing applications where you can apply them. Instead of code

reuse, with patterns you get experience reuse.

intro to Design Patterns

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
Bu

nch
 of

 Pa
tt

ern
s

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods…

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings
fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quack-

ing
}

Quack
quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

display() {

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mal-

lard }

Mallard Duck
display() {

// looks like a redhead

}

Redhead Duck
display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fly behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

OBSERVER

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented

designer. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

It started with a simple SimUDuck app 2

But now we need the ducks to FLY 3

But something went horribly wrong… 4

Joe thinks about inheritance… 5

How about an interface? 6

What would you do if you were Joe? 7

The one constant in software development 8

Zeroing in on the problem… 9

Separating what changes from what stays the same 10

Designing the Duck Behaviors 11

Implementing the Duck Behaviors 13

Integrating the Duck Behavior 15

Testing the Duck code 18

Setting behavior dynamically 20

The Big Picture on encapsulated behaviors 22

HAS-A can be better than IS-A 23

Speaking of Design Patterns… 24

Overheard at the local diner… 26

Overheard in the next cubicle… 27

The power of a shared pattern vocabulary 28

How do I use Design Patterns? 29

Tools for your Design Toolbox 32

The Weather Monitoring application overview 39

Meet the Observer Pattern 44

Publishers + Subscribers = Observer Pattern 45

The Observer Pattern defined 51

The Power of Loose Coupling 54

Designing the Weather Station 57

Implementing the Weather Station 58

Power up the Weather Station 61

Looking for the Observer Pattern in the Wild 65

Coding the life-changing application 66

Meanwhile, back at Weather-O-Rama 69

Test Drive the new code 71

Tools for your Design Toolbox 72

Design Principle Challenge 73

2 Keeping your Objects in the Know
You don’t want to miss out when something
interesting happens, do you? We’ve got a pattern that keeps your

objects in the know when something they care about happens. It’s the Observer

Pattern. It is one of the most commonly used design patterns, and it’s incredibly

useful. We’re going to look at all kinds of interesting aspects of Observer, like its

one-to-many relationships and loose coupling. And, with those concepts in mind,

how can you help but be the life of the Patterns Party?

the Observer Pattern

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics

Encapsulate what varies.

Favor Composition over

inheritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled

designs between objects tha
t

interact.

OO Principles

table of contents

3 Decorating Objects
Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you’ll be able to give your (or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

the Decorator Pattern

I used to think real men
subclassed everything. That was until
I learned the power of extension
at runtime, rather than at compile

time. Now look at me!

Welcome to Starbuzz Coffee 80

The Open-Closed Principle 86

Meet the Decorator Pattern 88

Constructing a drink order with Decorators 89

The Decorator Pattern defined 91

Decorating our Beverages 92

Writing the Starbuzz code 95

Coding beverages 96

Coding condiments 97

Serving some coffees 98

Real-World Decorators: Java I/O 100

Decorating the java.io classes 101

Writing your own Java I/O Decorator 102

Test out your new Java I/O Decorator 103

Tools for your Design Toolbox 105

4 Baking with OO Goodness
Get ready to bake some loosely coupled OO designs.
There is more to making objects than just using the new operator. You’ll

learn that instantiation is an activity that shouldn’t always be done in public

and can often lead to coupling problems. And we don’t want that, do we?

Find out how Factory Patterns can help save you from embarrassing

dependencies.

the Factory Pattern

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createPizza()

NYPizzaStore

ThinCrustDough

MarinaraSauce

ReggianoCheese

FrozenClams

ThickCrustDough

PlumTomatoSauce

Mozzarella Cheese

FreshClams

Each factory produces a different
implementation for the family of products.

The abstract PizzaIngredientFactory
is the interface that defines how to
make a family of related products-
everything we need to make a pizza.

The clients of the Abstract
Factory are the two
instances of our PizzaStore,
NYPizzaStore and
ChicagoStylePizzaSore.

The job of the concrete
pizza factories is to
make pizza ingredients.
Each factory knows
how to create the right
objects for their region.

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

<<interface>>
PizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

NYPizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

ChicagoPizzaIngredientFactory

Identifying the aspects that vary 112

Encapsulating object creation 114

Building a simple pizza factory 115

The Simple Factory defined 117

A framework for the pizza store 120

Allowing the subclasses to decide 121

Declaring a factory method 125

It’s finally time to meet the Factory Method Pattern 131

View Creators and Products in Parallel 132

Factory Method Pattern defined 134

Looking at object dependencies 138

The Dependency Inversion Principle 139

Applying the Principle 140

Families of ingredients… 145

Building the ingredient factories 146

Reworking the pizzas… 149

Revisiting our pizza stores 152

What have we done? 153

Abstract Factory Pattern defined 156

Factory Method and Abstract Factory compared 160

Tools for your Design Toolbox 162

table of contents

5 One-of-a-Kind Objects
Our next stop is the Singleton Pattern, our ticket to
creating one-of-a-kind objects for which there is only
one instance, ever. You might be happy to know that of all patterns,

the Singleton is the simplest in terms of its class diagram; in fact, the diagram

holds just a single class! But don’t get too comfortable; despite its simplicity

from a class design perspective, it’s going to require some deep object-oriented

thinking in its implementation. So put on that thinking cap, and let’s get going.

the Singleton Pattern

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has

one instance an
d provide a glo

bal point

of access to it.

Dissecting the classic Singleton Pattern implementation 173

The Chocolate Factory 175

Singleton Pattern defined 177

Houston, we have a problem 178

Dealing with multithreading 180

Can we improve multithreading? 181

Meanwhile, back at the Chocolate Factory… 183

Tools for your Design Toolbox 186

Hershey, PA

6 Encapsulating Invocation

In this chapter, we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That’s right—by encapsulating method invocation, we can crystallize pieces

of computation so that the object invoking the computation doesn’t need to

worry about how to do things, it just uses our crystallized method to get it

done. We can also do some wickedly smart things with these encapsulated

method invocations, like save them away for logging or reuse them to

implement undo functionality in our code.

the Command Pattern

I’ll have a Burger
with Cheese and a Malt
Shake

Burger with Cheese

 Malt Shake
createOrder()

takeOrder()

Burger with Cheese

 Malt Shake

orderU
p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
order

slip and the customer’s menu

items that are written on it.

The customer knows
what he wants and
creates an order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the instr
uctions

needed t
o prepare

the meal. The

Order dire
cts the

Short Order Cook

with methods li
ke

makeBurger().

The Short Order Cook follows the instructions of the Order and produces the meal.

Start H
ere

Home Automation or Bust 192

Taking a look at the vendor classes 194

A brief introduction to the Command Pattern 197

From the Diner to the Command Pattern 201

Our first command object 203

Using the command object 204

Assigning Commands to slots 209

Implementing the Remote Control 210

Implementing the Commands 211

Putting the Remote Control through its paces 212

Time to write that documentation… 215

What are we doing? 217

Time to QA that Undo button! 220

Using state to implement Undo 221

Adding Undo to the Ceiling Fan commands 222

Every remote needs a Party Mode! 225

Using a macro command 226

More uses of the Command Pattern: queuing requests 229

More uses of the Command Pattern: logging requests 230

Command Pattern in the Real World 231

Tools for your Design Toolbox 233

table of contents

7 Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound
impossible? Not when we have Design Patterns. Remember the Decorator
Pattern? We wrapped objects to give them new responsibilities. Now we’re
going to wrap some objects with a different purpose: to make their interfaces look
like something they’re not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface. That’s not
all; while we’re at it, we’re going to look at another pattern that wraps objects to
simplify their interface.

the Adapter and Facade Patterns

Adaptee

Client

Adapter

request() translatedRequest()

The Client is implemented

against the target interface

The Adapter implements the

target interface and holds an

instance of the Adaptee

target interface

adaptee
interface

Turkey was the
adaptee interface

British Wall Outlet

AC Power Adapter

Standard AC Plug

Adapters all around us 238

Object-oriented adapters 239

If it walks like a duck and quacks like a duck, then it must
 might be a duck turkey wrapped with a duck adapter… 240

Test drive the adapter 242

The Adapter Pattern explained 243

Adapter Pattern defined 245

Object and class adapters 246

Real-world adapters 250

Adapting an Enumeration to an Iterator 251

Home Sweet Home Theater 257

Watching a movie (the hard way) 258

Lights, Camera, Facade! 260

Constructing your home theater facade 263

Implementing the simplified interface 264

Time to watch a movie (the easy way) 265

Facade Pattern defined 266

The Principle of Least Knowledge 267

How NOT to Win Friends and Influence Objects 268

The Facade Pattern and the Principle of Least Knowledge 271

Tools for your Design Toolbox 272

8 Encapsulating Algorithms
We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas…what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses

can hook themselves right into a computation anytime they want. We’re even

going to learn about a design principle inspired by Hollywood. Let’s get started…

the Template Method Pattern

1 Boil some water

2

3

4

Steep the tea bag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grindsPour coffee in a cup
Add sugar and milk

2

4

Steep the teabag in the water
Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage knows

and controls the steps
of

the recipe, and perform
s

steps 1 and 3 itself, bu
t

relies on Tea or Coffee

to do steps 2 and 4.

We’ve recognized that
the two recipes are
essentially the same,

although some of the
steps require different
implementations. So

we’ve generalized the
recipe and placed it in

the base class.

generalize

relies on
subclass for
some steps

generalize

relies on
subclass for
some steps

It’s time for some more caffeine 278

Whipping up some coffee and tea classes (in Java) 279

Let’s abstract that Coffee and Tea 282

Taking the design further… 283

Abstracting prepareRecipe() 284

What have we done? 287

Meet the Template Method 288

What did the Template Method get us? 290

Template Method Pattern defined 291

Hooked on Template Method… 294

Using the hook 295

The Hollywood Principle and Template Method 299

Template Methods in the Wild 301

Sorting with Template Method 302

We’ve got some ducks to sort… 303

What is compareTo()? 303

Comparing Ducks and Ducks 304

Let’s sort some Ducks 305

The making of the sorting duck machine 306

Swingin’ with Frames 308

Custom Lists with AbstractList 309

Tools for your Design Toolbox 313

table of contents

http://seriouspony.com
http://elisabethrobson.com

9 Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its

own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your

implementation? We certainly hope not! That just wouldn’t be professional. Well, you

don’t have to risk your career; in this chapter you’re going to see how you can allow

your clients to iterate through your objects without ever getting a peek at how you

store your objects. You’re also going to learn how to create some super collections of

objects that can leap over some impressive data structures in a single bound. And if

that’s not enough, you’re also going to learn a thing or two about object responsibility.

the Iterator and Composite Patterns

PancakeHouse
M

en
u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Array

ArrayList

Breaking News: Objectville Diner and Objectville Pancake House Merge 318

Check out the Menu Items 319

Implementing the spec: our first attempt 323

Can we encapsulate the iteration? 325

Meet the Iterator Pattern 327

Adding an Iterator to DinerMenu 328

Reworking the DinerMenu with Iterator 329

Fixing up the Waitress code 330

Testing our code 331

Reviewing our current design… 333

Cleaning things up with java.util.Iterator 335

Iterator Pattern defined 338

The Iterator Pattern Structure 339

The Single Responsibility Principle 340

Meet Java’s Iterable interface 343

Java’s enhanced for loop 344

Taking a look at the Café Menu 347

Iterators and Collections 353

Is the Waitress ready for prime time? 355

The Composite Pattern defined 360

Designing Menus with Composite 363

Implementing MenuComponent 364

Implementing the MenuItem 365

Implementing the Composite Menu 366

Now for the test drive… 369

Tools for your Design Toolbox 376

10 The State of Things

A little-known fact: the Strategy and State Patterns were
twins separated at birth. You’d think they’d live similar lives, but the Strategy

Pattern went on to create a wildly successful business around interchangeable algorithms,

while State took the perhaps more noble path of helping objects to control their behavior

by changing their internal state. As different as their paths became, however, underneath

you’ll find almost precisely the same design. How can that be? As you’ll see, Strategy

and State have very different intents. First, let’s dig in and see what the State Pattern is all

about, and then we’ll return to explore their relationship at the end of the chapter.

the State Pattern

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We may

be adding more behavior in the future, so you need t
o keep the

design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
ert

s q
uar

ter

eje
cts

 qu
art

er

turns crank

dispense
gumball

gumballs = 0

gumballs > 0

Java Breakers 382

State machines 101 384

Writing the code 386

In-house testing 388

You knew it was coming…a change request! 390

The messy STATE of things… 392

The new design 394

Defining the State interfaces and classes 395

Reworking the Gumball Machine 398

Now, let’s look at the complete GumballMachine class… 399

Implementing more states 400

The State Pattern defined 406

We still need to finish the Gumball 1 in 10 game 409

Finishing the game 410

Demo for the CEO of Mighty Gumball, Inc. 411

Sanity check… 413

We almost forgot! 416

Tools for your Design Toolbox 419

table of contents

11 Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone asking

you for services, so you have the bad cop control access to you. That’s what proxies

do: control and manage access. As you’re going to see, there are lots of ways in

which proxies stand in for the objects they proxy. Proxies have been known to haul

entire method calls over the internet for their proxied objects; they’ve also been

known to patiently stand in for some pretty lazy objects.

the Proxy Pattern

<<interface>>
Subject

request()

RealSubject

request()

Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

The proxy now consists of two

classes.

invoke()

Coding the Monitor 427

Testing the Monitor 428

Remote methods 101 433

Getting the GumballMachine ready to be a remote service 446

Registering with the RMI registry… 448

The Proxy Pattern defined 455

Get ready for the Virtual Proxy 457

Designing the Album Cover Virtual Proxy 459

Writing the Image Proxy 460

Using the Java API’s Proxy to create a protection proxy 469

Geeky Matchmaking in Objectville 470

The Person implementation 471

Five-minute drama: protecting subjects 473

Big Picture: creating a Dynamic Proxy for the Person 474

The Proxy Zoo 482

Tools for your Design Toolbox 485

The code for the Album Cover Viewer 489

12 Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You’ve already witnessed the acrimonious Fireside Chats (and
you haven’t even seen the Pattern Death Match pages that the editor forced us to
remove from the book), so who would have thought patterns can actually get along
well together? Well, believe it or not, some of the most powerful OO designs use
several patterns together. Get ready to take your pattern skills to the next level; it’s
time for compound patterns.

compound patterns

Working together 494

Duck reunion 495

What did we do? 517

A bird’s duck’s-eye view: the class diagram 518

The King of Compound Patterns 520

Meet Model-View-Controller 523

A closer look… 524

Understanding MVC as a set of Patterns 526

Using MVC to control the beat… 528

Building the pieces 531

Now let’s have a look at the concrete BeatModel class 532

The View 533

Implementing the View 534

Now for the Controller 536

Putting it all together… 538

Exploring Strategy 539

Adapting the Model 540

And now for a test run… 542

Tools for your Design Toolbox 545

BeatModel

Controller

setBPM()

getBPM()

on()

off()

Click on the
increase beat
button…

The controller asks
the model to update
its BPM by one.

View is notified that the
BPM changed. It calls
getBPM() on the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

…which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

table of contents

13 Patterns in the Real World
Ahhhh, now you’re ready for a bright new world filled
with Design Patterns. But, before you go opening all those new doors
of opportunity, we need to cover a few details that you’ll encounter out in the
real world—that’s right, things get a little more complex than they are here
in Objectville. Come along, we’ve got a nice guide to help you through the
transition…

better living with patterns

Design Pattern defined 565

Looking more closely at the Design Pattern definition 567

May the force be with you 568

So you wanna be a Design Patterns writer 573

Organizing Design Patterns 575

Thinking in Patterns 580

Your Mind on Patterns 583

Don’t forget the power of the shared vocabulary 585

Cruisin’ Objectville with the Gang of Four 587

Your journey has just begun… 588

The Patterns Zoo 590

Annihilating evil with Anti-Patterns 592

Tools for your Design Toolbox 594

Leaving Objectville 595

Erich Gamma

John Vlissides

Richard
Helm

Ralph
Johnson

Gang of Four

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide of tips & tricks for living with patterns in the real

world. In this guide you will:

b Learn the all too common misconceptions about the definition of a “Design

Pattern.”

b Discover those nifty Design Pattern Catalogs and why you just have to get

one.

b Avoid the embarrassment of using a Design Pattern at the wrong time.

b Learn how to keep patterns in classifications where they belong.

b See that discovering patterns isn’t just for the gurus; read our quick How To

and become a patterns writer too.

b Be there when the true identify of the mysterious Gang of Four is revealed.

b Keep up with the neighbors – the coffee table books any patterns user must

own.

b Learn to train your Design Patterns mind like a Zen master.

b Win friends and influence developers by improving your patterns vocabulary.

14 Appendix: Leftover Patterns

Not everyone can be the most popular. A lot has changed in the

last 25+ years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of

times. The patterns we summarize in this appendix are full-fledged, card-carrying,

official GoF patterns, but aren’t used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high-level idea of what these patterns are all about.

i Index 617

Bridge 598

Builder 600

Chain of Responsibility 602

Flyweight 604

Interpreter 606

Mediator 608

Memento 610

Prototype 612

Visitor 614

Visitor

 Client /
Traverser

getState()getState()

getState()

getState()

getStat
e()

ge
tH
ea
lt
hR
at
in
g(
)

ge
tC
al
or
ie
s(
)

ge
tP
ro
te
in
()

ge
tC
ar
bs
()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves).

The Client asks
the Visitor to get
information from the
Composite structure…
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call
getState() across classes, and this is
where you can add new methods for
the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

MenuItem

Menu

Ingredient

MenuItem

Ingredient

table of contents

