
Head First Java™

Third Edition

Wouldn’t it be dreamy
if there was a Java book

that was more stimulating
than waiting in line at the
DMV to renew your driver’s
license? It’s probably just a

fantasy...

Kathy Sierra
Bert Bates
Trisha Gee

Head First Java™

Third Edition

by Kathy Sierra, Bert Bates, and Trisha Gee

Copyright © 2022 by Kathy Sierra and Bert Bates. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor for 1st and 2nd Editions: 	 Mike Loukides

Editors for 3rd Edition: Suzanne McQuade, Nicole Taché

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen

Cover Illustration: José Marzan, Jr.

Production Editor: 	 Kristen Brown

Original Interior Designers: Kathy Sierra and Bert Bates

3rd Edition Design Support: Ron Bilodeau

Java Whisperer: Trisha Gee

Series Advisors: Eric Freeman, Elizabeth Robson

Printing History:
May 2003:	 First Edition.
February 2005:	 Second Edition.
May 2022: 	 Third Edition

(You might want to pick up a copy of all the editions...for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

In other words, if you use anything in Head First Java™ to, say, run a nuclear power plant or air traffic
control system, you’re on your own.

978-149-191077-1

[LSI]									 [2022-05-11]

xii

i Intro
Your brain on Java. Here you are trying to learn something, while here your brain

is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking, “Better

leave room for more important things, like which wild animals to avoid and whether naked

snowboarding is a bad idea.” So how do you trick your brain into thinking that your life

depends on knowing Java?

Who is this book for?	 xxvi

We know what you’re thinking.	 xxvii

Metacognition: thinking about thinking.	 xxix

Here’s what WE did	 xxx

Here’s what YOU can do to bend your brain into submission	 xxxi

What you need for this book	 xxxii

Last-minute things you need to know	 xxxiii

Table of Contents (summary)
 Intro	 xxi

1 	 Breaking the Surface: dive in: a quick dip	 1

2	 A Trip to Objectville: classes and objects	 27

3	 Know Your Variables: primitives and references	 49

4	 How Objects Behave: methods use instance variables	 71

5	 Extra-Strength Methods: writing a program	 95

6	 Using the Java Library: get to know the Java API	 125

7	 Better Living in Objectville: inheritance and polymorphism	 167

8	 Serious Polymorphism: interfaces and abstract classes	 199

9	 Life and Death of an Object: constructors and garbage collection	 237

10	 Numbers Matter: numbers and statics	 275

11	 Data Structures: collections and generics	 309

12	 What, Not How: lambdas and streams	 369

13	 Risky Behavior: exception handling	 421

14	 A Very Graphic Story: intro to GUI, event handling, and inner classes	 461

15	 Work on Your Swing: using swing	 509

16	 Saving Objects (and Text): serialization and file I/O	 539

17	 Make a Connection: networking and threads	 587

18	 Dealing with Concurrency Issues: race conditions and immutable data	 639

A	 Appendix A: final code kitchen	 673

B	 Appendix B: the top ten-ish topics that didn’t make it into the rest of the book	 683

	 Index	 701

Table of Contents (the real thing)

table of contents

xiii

2 A Trip to Objectville
I was told there would be objects. In Chapter 1, we put all of our code in

the main() method. That’s not exactly object-oriented. So now we’ve got to leave that

procedural world behind and start making some objects of our own. We’ll look at what

makes object-oriented (OO) development in Java so much fun. We’ll look at the difference

between a class and an object. We’ll look at how objects can improve your life.

1 Breaking the Surface
Java takes you to new places. From its humble release to the public as the

(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented fea-

tures, memory management, and best of all—the promise of portability. We’ll take a quick dip

and write some code, compile it, and run it. We’re talking syntax, loops, branching, and what

makes Java so cool. Dive in.

The Way Java Works	 2

What you’ll do in Java	 3

A Very Brief History of Java	 4

Code structure in Java	 7

Writing a class with a main()	 9

Simple boolean tests	 13

Conditional branching	 15

Coding a Serious Business 	 16

Phrase-O-Matic	 19

Exercises	 20

Exercise Solutions	 25

Method Party()
 0 aload_0
 1 invokespecial #1
<Method java.lang.
Object()>
 4 return

Compiled
bytecode

 Virtual
Machines

Chair Wars	 28

Making your first object	 36

Making and testing Movie objects	 37

Quick! Get out of main!	 38

Running the Guessing Game	 40

Exercises	 42

Exercise Solutions	 47

table of contents

xiv

pass-by-value means
pass-by-copy

3 Know Your Variables
Variables come in two flavors: primitive and reference.
There’s gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner

object with a Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap

the mysteries of Java types and look at what you can declare as a variable, what you can put

in a variable, and what you can do with a variable. And we’ll finally see what life is truly like

on the garbage-collectible heap.

Dog reference

Dog objec
t

size
24

int

fido

4 How Objects Behave
State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by instance variables and methods. Now we’ll look

at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like, “if dog weight is less than 14

pounds, make yippy sound, else...” Let’s go change some state!

00000111

int

X
00000111

int

Z

copy of x

foo.go(x); void go(int z){ }

Declaring a variable	 50

“I’d like a double mocha, no, make it an int.”	 51

Back away from that keyword!	 53

Controlling your Dog object	 54

An object reference is just another variable value. 	 55

Life on the garbage-collectible heap	 57

An array is like a tray of cups	 59

A Dog example	 62

Exercises	 63

Exercise Solutions	 68

Remember: a class describes what an object knows and
what an object does	 72

The size affects the bark	 73

You can send things to a method	 74

You can get things back from a method.	 75

You can send more than one thing to a method	 76

Cool things you can do with parameters and return types	 79

Encapsulation	 80

How do objects in an array behave?	 83

Declaring and initializing instance variables	 84

Comparing variables (primitives or references)	 86

Exercises	 88

Exercise Solutions	 93

table of contents

xv

5 Extra-Strength Methods
Let’s put some muscle in our methods. You dabbled with variables,

played with a few objects, and wrote a little code. But you need more tools. Like

operators. And loops. Might be useful to generate random numbers. And turn
a String into an int, yeah, that would be cool. And why don’t we learn it all by building

something real, to see what it’s like to write (and test) a program from scratch. Maybe a
game, like Sink a Startup (similar to Battleship).

6 Using the Java Library
Java ships with hundreds of prebuilt classes. You don’t have to

reinvent the wheel if you know how to find what you need from the Java library, commonly

known as the Java API. You’ve got better things to do. If you’re going to write code, you

might as well write only the parts that are custom for your application. The core Java library

is a giant pile of classes just waiting for you to use like building blocks.

We’re gonna bu
ild the

Sink a Start
up game

“Good to know there’s an ArrayList in the java.
util package. But by myself, how would I have
figured that out?”

- Julia, 31, hand model

Let’s build a Battleship-style game: “Sink a Startup”	 96

Developing a Class	 99

Writing the method implementations	 101

Writing test code for the SimpleStartup class	 102

The checkYourself() method	 104

Prep code for the SimpleStartupGame class	 108

The game’s main() method	 110

Let’s play	 113

More about for loops	 114

The enhanced for loop	 116

Casting primitives	 117

Exercises	 118

Exercise Solutions	 122

In our last chapter, we left you with the cliff-hanger. A bug.	 126

Wake up and smell the library	 132

Some things you can do with ArrayList	 133

Comparing ArrayList to a regular array	 137

Let’s build the REAL game: “Sink a Startup”	 140

Prep code for the real StartupBust class	 144

The final version of the Startup class	 150

Super Powerful Boolean Expressions	 151

Using the Library (the Java API)	 154

Exercises	 163

Exercise Solutions	 165

table of contents

xvi

Did we forget about something when we designed this?	 200

The compiler won’t let you instantiate an abstract class	 203

Abstract vs. Concrete	 204

You MUST implement all abstract methods	 206

Polymorphism in action	 208

Why not make a class generic enough to take anything?	 210

When a Dog won’t act like a Dog	 214

Let’s explore some design options	 221

Making and Implementing the Pet interface 	 227

Invoking the superclass version of a method	 230

Exercises	 232

Exercise Solutions	 235

7 Better Living in Objectville
Plan your programs with the future in mind. What if you could write

code that someone else could extend, easily? What if you could write code that was flexible, for

those pesky last-minute spec changes? When you get on the Polymorphism Plan, you’ll learn the

5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make flexible code,

and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

8 Serious Polymorphism
Inheritance is just the beginning. To exploit polymorphism, we need

interfaces. We need to go beyond simple inheritance to flexibility you can get only by

designing and coding to interfaces. What’s an interface? A 100% abstract class. What’s an

abstract class? A class that can’t be instantiated. What’s that good for? Read the chapter...

Make it Stick
Roses are red, violets are blue.Square IS-A Shape, the reverse isn’t true.Roses are red, violets are dear.Beer IS-A Drink, but not all drinks are beer.OK, your turn. Make one that shows the one-

way-ness of the IS-A relationship. And remem-
ber, if X extends Y, X IS-A Y must make sense.

Object o = al.get(id);
Dog d = (Dog) o;

d.bark();

Object

 o
 Dog object

Dog

d

cast the Object back to a Dog we know is there.

Object

Chair Wars Revisited...	 168

Understanding inheritance	 170

Let’s design the inheritance tree for an Animal simulation program	 172

Looking for more inheritance opportunities	 175

Using IS-A and HAS-A	 179

How do you know if you’ve got your inheritance right?	 181

When designing with inheritance, are you using or abusing?	 183

Keeping the contract: rules for overriding	 192

Overloading a method	 193

Exercises	 194

Exercise Solutions	 197

table of contents

xvii

9 Life and Death of an Object
Objects are born and objects die. You’re in charge. You decide when and

how to construct them. You decide when to abandon them. The Garbage Collector (gc)

reclaims the memory. We’ll look at how objects are created, where they live, and how to

keep or abandon them efficiently. That means we’ll talk about the heap, the stack, scope,

constructors, super constructors, null references, and gc eligibility.

10 Numbers Matter
Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.
But what about formatting? You might want numbers to print exactly two decimal points,
or with commas in all the right places. And you might want to print and manipulate dates,
too. And what about parsing a String into a number? Or turning a number into a String?
We’ll start by learning what it means for a variable or method to be static.

‘d’ is assigned a new Duck object, leaving the
original (first) Duck object abandoned. That
first Duck is toast.

Duck object

Heap
d

Duck object
When someone calls

the go() method, this

Duck is abandoned. H
is

only reference has
been

reprogrammed for a

different Duck.

kid instance one
kid instance two

static variable:
iceCream

Static variables
are shared by
all instances of
a class.

instance variables:
one per instance

static variables:
one per class

The Stack and the Heap: where things live	 238

Methods are stacked	 239

What about local variables that are objects?	 240

The miracle of object creation	 242

Construct a Duck	 244

Doesn’t the compiler always make a no-arg constructor for you?	 248

Nanoreview: four things to remember about constructors	 251

The role of superclass constructors in an object’s life	 253

Can the child exist before the parents?	 256

What about reference variables?	 262

I don’t like where this is headed.	 263

Exercises	 268

Exercise Solutions	 272

MATH methods: as close as you’ll ever get to a global method	 276

The difference between regular (non-static) and static methods	 277

Initializing a static variable	 283

Math methods	 288

Wrapping a primitive	 290

Autoboxing works almost everywhere	 292

Turning a primitive number into a String	 295

Number formatting	 296

The format specifier	 300

Exercise	 306

Exercise Solutions	 308

table of contents

xviii

11 Data Structures
Sorting is a snap in Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms. The Java Collections

Framework has a data structure that should work for virtually anything you’ll ever need

to do. Want to keep a list that you can easily keep adding to? Want to find something by

name? Want to create a list that automatically takes out all the duplicates? Sort your co-

workers by the number of times they’ve stabbed you in the back?

Exploring the java.util API, List and Collections	 314

Generics means more type-safety	 320

Revisiting the sort() method	 327

The new, improved, comparable Song class	 330

Sorting using only Comparators	 336

Updating the Jukebox code with Lambdas	 342

Using a HashSet instead of ArrayList	 347

What you MUST know about TreeSet...	 353

We’ve seen Lists and Sets, now we’ll use a Map	 355

Finally, back to generics	 358

Exercise Solutions	 364

0 1 2 3List

Set

Map “Ball” “Fish” “Car”“Ball1” “Ball2” “Fish” “Car”

12 Lambdas and Streams: What, Not How
What if...you didn’t need to tell the computer HOW to do
something? In this chapter we’ll look at the Streams API. You’ll see how helpful

lambda expressions can be when you’re using streams, and you’ll learn how to use the

Streams API to query and transform the data in a collection.

Tell the computer WHAT you want	 370

When for loops go wrong	 372

Introducing the Streams API	 375

Getting a result from a Stream	 378

Guidelines for working with streams	 384

Hello Lambda, my (not so) old friend	 368

Spotting Functional Interfaces	 396

Lou’s Challenge #1: Find all the “rock” songs	 400

Lou’s Challenge #2: List all the genres	 404

Exercises	 415

Exercise Solutions	 417

.stream()

.collect(toList)

.filter()

Songs

Only let cer
tain

songs pass
to

the next s
tage

Output results
as a List

table of contents

xix

13Risky Behavior
Stuff happens. The file isn’t there. The server is down. No matter how good a

programmer you are, you can’t control everything. When you write a risky method, you

need code to handle the bad things that might happen. But how do you know when a

method is risky? Where do you put the code to handle the exceptional situation? In this

chapter, we’re going to build a MIDI Music Player that uses the risky JavaSound API, so we

better find out.

14 A Very Graphic Story
Face it, you need to make GUIs. Even if you believe that for the rest of your

life you’ll write only server-side code, sooner or later you’ll need to write tools, and you’ll

want a graphical interface. We’ll spend two chapters on GUIs and learn more language

features including Event Handling and Inner Classes. We’ll put a button on the screen,

we’ll paint on the screen, we’ll display a JPEG image, and we’ll even do some animation.

class with a
risky method

throws an exception back

class Cow {

 void moo() {

 if (serverDown){

 explode();

your code

class Bar {

 void go() {

 moo();

calls risky method
1

2

class MyOuter {

 class MyInner {
 void go() {
 }
 }

}

The outer and inner objects
are now intimately linked.

These two objects on the

heap have a special
 bond.

The inner can use th
e outer’s

variables (and vice
versa).

inner

outer

It all starts with a window	 462

Getting a user event	 465

Listeners, Sources, and Events	 469

Make your own drawing widget	 472

Fun things to do in paintComponent()	 473

GUI layouts: putting more than one widget on a frame	 478

Inner class to the rescue!	 484

lambdas to the rescue! (again)	 490

Using an inner class for animation	 492

An easier way to make messages/events	 498

Exercises	 502

Exercise Solutions	 507

Let’s make a Music Machine	 422

First we need a Sequencer	 424

An exception is an object...of type Exception	 428

Flow control in try/catch blocks	 432

Did we mention that a method can throw more than one exception?	 435

Multiple catch blocks must be ordered from smallest to biggest	 438

Ducking (by declaring) only delays the inevitable	 442

Code Kitchen	 445

Version 1: Your very first sound player app	 448

Version 2: Using command-line args to experiment with sounds	 452

Exercises	 454

Exercise Solutions	 457

table of contents

xx

15 Work on Your Swing
Swing is easy. Unless you actually care where everything goes. Swing code looks

easy, but then compile it, run it, look at it, and think, “hey, that’s not supposed to go there.”

The thing that makes it easy to code is the thing that makes it hard to control—the Layout
Manager. But with a little work, you can get layout managers to submit to your will. In

this chapter, we’ll work on our Swing and learn more about widgets.

16 Saving Objects (and Text)
Objects can be flattened and inflated. Objects have state and behavior.

Behavior lives in the class, but state lives within each individual object. If your program

needs to save state, you can do it the hard way, interrogating each object, painstakingly

writing the value of each instance variable. Or, you can do it the easy OO way—you simply

freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

Components in
the east and
west get their
preferred width.

Things in the
north and
south get their
preferred height.

The center gets whatever’s left.

Swing components	 510

Layout Managers	 511

The Big Three layout managers: border, flow, and box.	 513

Playing with Swing components	 523

Code Kitchen	 526

Making the BeatBox	 529

Exercises	 534

Exercise Solutions	 537

Writing a serialized object to a file	 542

If you want your class to be serializable, implement Serializable	 547

Deserialization: restoring an object	 551

Version ID: A Big Serialization Gotcha	 556

Writing a String to a Text File	 559

Reading from a Text File	 566

Quiz Card Player (code outline)	 567

Path, Paths, and Files (messing with directories)	 573

Finally, a closer look at finally	 574

Saving a BeatBox pattern	 579

Exercises	 580

Exercise Solutions	 584

serialized

deserialized
Any question

s?

table of contents

xxi

17 Make a Connection
Connect with the outside world. It’s easy. All the low-level networking

details are taken care of by classes in the java.net library. One of Java’s best features is

that sending and receiving data over a network is really just I/O with a slightly different

connection stream at the end of the chain. In this chapter we’ll make client sockets. We’ll

make server sockets. We’ll make clients and servers. Before the chapter’s done, you’ll have a

fully functional, multithreaded chat client. Did we just say multithreaded? Connection to port 5000 on the server at 196.164.1.103

Connection ba
ck

to the client
 at

196.164.1.100, port

4242

ServerClient

Connecting, Sending, and Receiving	 590

The DailyAdviceClient	 598

Writing a simple server application	 601

Java has multiple threads but only one Thread class	 610

The three states of a new thread	 616

Putting a thread to sleep	 622

Making and starting two threads (or more!)	 626

Closing time at the thread pool	 629

New and improved SimpleChatClient	 632

Exercises	 631

Exercise Solutions	 636

A

18 Dealing with Concurrency Issues
Doing two or more things at once is hard. Writing multithreaded code is

easy. Writing multithreaded code that works the way you expect can be much harder. In this final

chapter, we’re going to show you some of the things that can go wrong when two or more threads

are working at the same time. You’ll learn about some of the tools in java.util.concurrent that can help

you to write multithreaded code that works correctly. You’ll learn how to create immutable objects

(objects that don’t change) that are safe for multiple threads to use. By the end of the chapter, you’ll

have a lot of different tools in your toolkit for working with concurrency.

The Ryan and Monica problem, in code	 642

Using an object’s lock	 647

The dreaded “Lost Update” problem	 650

Make the increment() method atomic. Synchronize it!	 652

Deadlock, a deadly side of synchronization	 654

Compare-and-swap with atomic variables	 656

Using immutable objects 	 659

More problems with shared data	 662

Use a thread-safe data structure	 664

Exercises	 668

Exercise Solutions	 670

CopyOnWrit
eA

rra

yL
ist

935 34 173
iterating

935 34 173 5writing to copy

reference
for reading

B

table of contents

B Appendix B
The top ten-ish topics that didn’t make it into the rest of the
book. We can’t send you out into the world just yet. We have a few more things for you,

but this is the end of the book. And this time we really mean it.

#11 JShell (Java REPL)	 684

#10 Packages	 685

#9 Immutability in Strings and Wrappers	 688

#8 Access levels and access modifiers (who sees what)	 689

#7 Varargs	 691

#6 Annotations	 692

#5 Lambdas and Maps	 693

#4 Parallel Streams	 695

#3 Enumerations (also called enumerated types or enums)	 696

#2 Local Variable Type Inference (var)	 698

#1 Records	 699

A Appendix A
Final Code Kitchen. All the code for the full client-server chat beat box. Your

chance to be a rock star.

Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

Final BeatBox client program	 674

Final BeatBox server program	 681

i Index
	 701

table of contents

