
Beijing • Cambridge • K�ln • Sebastopol • Tokyo

Eric T. Freeman

Elisabeth Robson

Head First
JavaScript

Programming

Wouldn’t it be dreamy if there was
a JavaScript book that was more
fun than going to the dentist and
more revealing than an IRS form?
It’s probably just a fantasy...

ix

Intro

Your brain on JavaScript. Here you are trying to learn something, while here

your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing JavaScript programming?

Table of Contents (summary)
 Intro xxv

1 A quick dip into JavaScript: Getting your feet wet 1

2 Writing real code: Going further 43

3 Introducing functions: Getting functional 79

4 Putting some order in your data: Arrays 125

5 Understanding objects: A trip to Objectville 173

6 Interacting with your web page: Getting to know the DOM 229

7 Types, equality, conversion, and all that jazz: Serious types 265

8 Bringing it all together: Building an app 317

9 Asynchronous coding: Handling events 381

10 First-class functions: Liberated functions 429

11 Anonymous functions, scope, and closures: Serious functions 475

12 Advanced object construction: Creating objects 521

13 Using prototypes: Extra-strength objects 563

Appendix: The Top Ten Topics (we didn’t cover): Leftovers 623

Table of Contents (the real thing)

table of contents

Who is this book for ? xxvi

We know what you’re thinking. xxvii

We think of a “Head First” reader as a learner. xxviii

Metacognition: thinking about thinking xxix

Here’s what WE did: xxx

Here’s what YOU can do to bend your brain into submission xxxi

Read Me xxxii

Tech Reviewers xxxv

Acknowledgments* xxxvi

x

1 Getting your feet wet

a quick dip into javascript

JavaScript gives you superpowers. The true programming

language of the web, JavaScript lets you add behavior to your web pages. No

more dry, boring, static pages that just sit there looking at you—with JavaScript

you’re going to be able to reach out and touch your users, react to interesting

events, grab data from the web to use in your pages, draw graphics right in your

web pages and a lot more. And once you know JavaScript you’ll also be in a

position to create totally new behaviors for your users.

The way JavaScript works 2

How you’re going to write JavaScript 3

How to get JavaScript into your page 4

JavaScript, you’ve come a long way baby... 6

How to make a statement 10

Variables and values 11

Back away from that keyboard! 12

Express yourself 15

Doing things more than once 17

How the while loop works 18

Making decisions with JavaScript 22

And, when you need to make LOTS of decisions 23

Reach out and communicate with your user 25

A closer look at console.log 27

Opening the console 28

Coding a Serious JavaScript Application 29

How do I add code to my page? (let me count the ways) 32

We’re going to have to separate you two 33

table of contents

HTML CSS

JS

Browser

You’ve got a lot of flexibility in choosing your variable names, so here are a few Webville tips to make your naming easier:
Choose names that mean something. Variable names like _m, $, r and foo might mean something to you but they are generally frowned upon in Webville. Not only are you likely to forget them over time, your code will be much more readable with names like angle, currentPressure and passedExam.

Use “camel case” when creating multiword variable names. At some point you’re going to have to decide how you name a variable that represents, say, a two-headed dragon with fire. How? Just use camel case, in which you capitalize the first letter of each word (other than the first): twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville and gives you enough flexibility to create as specific a variable name as you need. There are other schemes too, but this is one of the more commonly used (even beyond JavaScript).

Use variables that begin with _ and $

only with very good reason.
Variables that begin with $ are usually reserved for JavaScript libraries and while some authors use variables beginning with _ for various conventions, we recommend you stay away from both unless you have very good reason (you’ll know if you do).

Be safe.

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in the book, but for now be clear in your naming, avoid keywords, and always use var when declaring a variable.

WEBVILLE
T I M E S

How to avoid those embarassing naming mistakes

xi

2 Going further

writing real code

You already know about variables, types, expressions...

we could go on. The point is, you already know a few things about

JavaScript. In fact, you know enough to write some real code. Some code that

does something interesting, some code that someone would want to use. What

you’re lacking is the real experience of writing code, and we’re going to remedy

that right here and now. How? By jumping in head first and coding up a casual

game, all written in JavaScript. Our goal is ambitious but we’re going to take it

one step at a time. Come on, let’s get this started, and if you want to launch the

next casual startup, we won’t stand in your way; the code is yours.

Let’s build a Battleship game 44

Our first attempt... 44

First, a high-level design 45

Working through the Pseudocode 47

Oh, before we go any further, don’t forget the HTML! 49

Writing the Simple Battleship code 50

Now let’s write the game logic 51

Step One: setting up the loop, getting some input 52

How prompt works 53

Checking the user’s guess 54

So, do we have a hit? 56

Adding the hit detection code 57

Provide some post-game analysis 58

And that completes the logic! 60

Doing a little Quality Assurance 61

Can we talk about your verbosity... 65

Finishing the Simple Battleship game 66

How to assign random locations 67

The world-famous recipe for generating a random number 67

Back to do a little more QA 69

Congrats on your first true JavaScript program,

and a short word about reusing code 71

table of contents

Start

Game set-up

Get user
guess

Check
guess

hitmiss Mark ship as
hit

sunk

Mark ship
as sunk

Display user
score/rating

Game
over

xii

3 Getting functional

introducing functions

Get ready for your first superpower. You’ve got some programming under

your belt; now it’s time to really move things along with functions. Functions give you the

power to write code that can be applied to all sorts of different circumstances, code that

can be reused over and over, code that is much more manageable, code that can be

abstracted away and given a simple name so you can forget all the complexity and get

on with the important stuff. You’re going to find not only that functions are your gateway

from scripter to programmer, they’re the key to the JavaScript programming style. In

this chapter we’re going to start with the basics: the mechanics, the ins and outs of how

functions really work, and then you’ll keep honing your function skills throughout the rest

of the book. So, let’s get a good foundation started, now.

What’s wrong with the code anyway? 81

By the way, did we happen to mention FUNCTIONS? 83

Okay, but how does it actually work? 84

What can you pass to a function? 89

JavaScript is pass-by-value. 92

Weird Functions 94

Functions can return things too 95

Tracing through a function with a return statement 96

Global and local variables 99

Knowing the scope of your local and global variables 101

The short lives of variables 102

Don’t forget to declare your locals! 103

table of contents

xiii

4 Arrays

putting some order in your data

There’s more to JavaScript than numbers, strings and

booleans. So far you’ve been writing JavaScript code with primitives—simple

strings, numbers and booleans, like “Fido”, 23, and true. And you can do a lot with

primitive types, but at some point you’ve got to deal with more data. Say, all the items

in a shopping cart, or all the songs in a playlist, or a set of stars and their apparent

magnitude, or an entire product catalog. For that we need a little more ummph. The

type of choice for this kind of ordered data is a JavaScript array, and in this chapter

we’re going to walk through how to put your data into an array, how to pass it around

and how to operate on it. We’ll be looking at a few other ways to structure your data

in later chapters but let’s get started with arrays.

Can you help Bubbles-R-Us? 126

How to represent multiple values in JavaScript 127

How arrays work 128

How big is that array anyway? 130

The Phrase-O-Matic 132

Meanwhile, back at Bubbles-R-Us... 135

How to iterate over an array 138

But wait, there’s a better way to iterate over an array 140

Can we talk about your verbosity? 146

Redoing the for loop with the post-increment operator 147

Quick test drive 147

Creating an array from scratch (and adding to it) 151

And the winners are... 155

A quick survey of the code... 157

Writing the printAndGetHighScore function 158

Refactoring the code using printAndGetHighScore 159

Putting it all together... 161

table of contents

60 50 60 58 54 54 58 50 52 54

0 1 2 3 4 5 6 7 8 9

xiv

5 A trip to Objectville

undestanding objects

So far you’ve been using primitives and arrays in your

code. And, you’ve approached coding in quite a procedural manner using simple

statements, conditionals and for/while loops with functions—that’s not exactly object-

oriented. In fact, it’s not object-oriented at all! We did use a few objects here and

there without really knowing it, but you haven’t written any of your own objects yet.

Well, the time has come to leave this boring procedural town behind to create some

objects of your own. In this chapter, you’re going to find out why using objects is

going to make your life so much better—well, better in a programming sense (we

can’t really help you with your fashion sense and your JavaScript skills all in one

book). Just a warning: once you’ve discovered objects you’ll never want to come back.

Send us a postcard when you get there.

Did someone say “Objects”?! 174

Thinking about properties... 175

How to create an object 177

What is Object-Oriented Anyway? 180

How properties work 181

How does a variable hold an object? Inquiring minds want to know... 186

Comparing primitives and objects 187

Doing even more with objects... 188

Stepping through pre-qualification 190

Let’s talk a little more about passing objects to functions 192

Oh Behave! Or, how to add behavior to your objects 198

Improving the drive method 199

Why doesn’t the drive method know about the started property? 202

How this works 204

How behavior affects state... Adding some Gas-o-line 210

Now let’s affect the behavior with the state 211

Congrats on your first objects! 213

Guess what? There are objects all around you!

(and they’ll make your life easier) 214

table of contents

xv

6 Getting to know the DOM

interacting with your web page

You’ve come a long way with JavaScript. In fact you’ve evolved from a newbie to

a scripter to, well, a programmer. But, there’s something missing. To really begin leveraging your

JavaScript skills you need to know how to interact with the web page your code lives in. Only by doing

that are you going to be able to write pages that are dynamic, pages that react, that respond, that

update themselves after they’ve been loaded. So how do you interact with the page? By using the DOM,

otherwise known as the document object model. In this chapter we’re going to break down the DOM

and see just how we can use it, along with JavaScript, to teach your page a few new tricks.

The “crack the code challenge.” 230

So what does the code do? 231

How JavaScript really interacts with your page 233

How to bake your very own DOM 234

A first taste of the DOM 235

Getting an element with getElementById 240

What, exactly, am I getting from the DOM? 241

Finding your inner HTML 242

What happens when you change the DOM 244

A test drive around the planets 247

Don’t even think about running my code until the page

is fully loaded! 249

You say “event hander,” I say “callback” 250

How to set an attribute with setAttribute 255

More fun with attributes!

(you can GET attributes too) 256

Don’t forget getElementById can return null too! 256

Any time you ask for something, you need to make sure

you got back what you expected... 256

So what else is a DOM good for anyway? 258

table of contents

Browser here, I’m
reading the page and
creating a DOM of it.

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is
well

Nothing to
report

All systems
A-OK

head

html

document

xvi

7 Serious types

types, equality, conversion, and all that jazz

It’s time to get serious about our types. One of the great things about

JavaScript is you can get a long way without knowing a lot of details of the language.

But to truly master the language, get that promotion and get on to the things you really

want to do in life, you have to rock at types. Remember what we said way back about

JavaScript? That it didn’t have the luxury of a silver-spoon, academic, peer-reviewed

language definition? Well that’s true, but the academic life didn’t stop Steve Jobs and

Bill Gates, and it didn’t stop JavaScript either. It does mean that JavaScript doesn’t have

the… well, the most thought-out type system, and we’ll find a few idiosyncrasies along

the way. But, don’t worry, in this chapter we’re going to nail all that down, and soon you’ll

be able to avoid all those embarrassing moments with types.

The truth is out there... 266

Watch out, you might bump into undefined

when you aren’t expecting it... 268

How to use null 271

Dealing with NaN 273

It gets even weirder 273

We have a confession to make 275

Understanding the equality operator (otherwise known as ==) 276

How equality converts its operands

(sounds more dangerous than it actually is) 277

How to get strict with equality 280

Even more type conversions... 286

How to determine if two objects are equal 289

The truthy is out there... 291

What JavaScript considers falsey 292

The Secret Life of Strings 294

How a string can look like a primitive and an object 295

A five-minute tour of string methods (and properties) 297

Chair Wars 301

table of contents

xvii

8 Building an app

bringing it all together

Put on your toolbelt. That is, the toolbelt with all your new coding skills, your

knowledge of the DOM, and even some HTML & CSS. We’re going to bring everything

together in this chapter to create our first true web application. No more silly toy

games with one battleship and a single row of hiding places. In this chapter we’re

building the entire experience: a nice big game board, multiple ships and user input

right in the web page. We’re going to create the page structure for the game with HTML,

visually style the game with CSS, and write JavaScript to code the game’s behavior. Get

ready: this is an all out, pedal to the metal development chapter where we’re going to lay

down some serious code.

This time, let’s build a REAL Battleship game 318

Stepping back... to HTML and CSS 319

Creating the HTML page: the Big Picture 320

Adding some more style 324

Using the hit and miss classes 327

How to design the game 329

Implementing the View 331

How displayMessage works 331

How displayHit and displayMiss work 333

The Model 336

How we’re going to represent the ships 338

Implementing the model object 341

Setting up the fire method 342

Implementing the Controller 349

Processing the player’s guess 350

Planning the code... 351

Implementing parseGuess 352

Counting guesses and firing the shot 355

How to add an event handler to the Fire! button 359

Passing the input to the controller 360

How to place ships 364

Writing the generateShip method 365

Generate the starting location for the new ship 366

Completing the generateShip method 367

table of contents

A

B

C

D

E

F

G

0 1 2 3 4 5 6

Ship3

Ship2

S
h

ip
1

HIT

xviii

9 Handling events

asynchronous coding

After this chapter you’re going to realize you aren’t in

Kansas anymore. Up until now, you’ve been writing code that typically

executes from top to bottom—sure, your code might be a little more complex than

that, and make use of a few functions, objects and methods, but at some point the

code just runs its course. Now, we’re awfully sorry to break this to you this late in

the book, but that’s not how you typically write JavaScript code. Rather, most

JavaScript is written to react to events. What kind of events? Well, how about a user

clicking on your page, data arriving from the network, timers expiring in the browser,

changes happening in the DOM and that’s just a few examples. In fact, all kinds

of events are happening all the time, behind the scenes, in your browser. In this

chapter we’re going rethink our approach to JavaScript coding, and learn how and

why we should write code that reacts to events.

What are events? 383

What’s an event handler? 384

How to create your first event handler 385

Test drive your event 386

Getting your head around events... by creating a game 388

Implementing the game 389

Test drive 390

Let’s add some more images 394

Now we need to assign the same event handler

to each image’s onclick property 395

How to reuse the same handler for all the images 396

How the event object works 399

Putting the event object to work 401

Test drive the event object and target 402

Events and queues 404

Even more events 407

How setTimeout works 408

Finishing the image game 412

Test driving the timer 413

table of contents

xix

10 Liberated functions

first class functions

Know functions, then rock. Every art, craft, and discipline has a key principle that

separates the intermediate players from the rock star virtuosos—when it comes to JavaScript, it’s truly

understanding functions that makes the difference. Functions are fundamental to JavaScript, and

many of the techniques we use to design and organize code depend on advanced knowledge and

use of functions. The path to learning functions at this level is an interesting and often mind-bending

one, so get ready... This chapter is going to be a bit like Willy Wonka giving a tour of the chocolate

factory—you’re going to encounter some wild, wacky and wonderful things as you learn more about

JavaScript functions.
The mysterious double life of the function keyword 430

Function declarations versus function expressions 431

Parsing the function declaration 432

What’s next? The browser executes the code 433

Moving on... The conditional 434

How functions are values too 439

Did we mention functions have

First Class status in JavaScript? 442

Flying First Class 443

Writing code to process and check passengers 444

Iterating through the passengers 446

Passing a function to a function 447

Returning functions from functions 450

Writing the flight attendant drink order code 451

The flight attendant drink order code: a different approach 452

Taking orders with first class functions 454

Webville Cola 457

How the array sort method works 459

Putting it all together 460

Take sorting for a test drive 462

table of contents

xx

11 Serious functions

anonymous functions, scopes, and closures

You’ve put functions through their paces, but there’s more to learn.

In this chapter we take it further; we get hard-core. We’re going to show you how to really handle

functions. This won’t be a super long chapter, but it will be intense, and at the end you’re going to

be more expressive with your JavaScript than you thought possible. You’re also going to be ready to

take on a coworker’s code, or jump into an open source JavasScript library, because we’re going to

cover some common coding idioms and conventions around functions. And if you’ve never heard of an

anonymous function or a closure, boy are you in the right place.

Taking a look at the other side of functions... 476

How to use an anonymous function 477

We need to talk about your verbosity, again 479

When is a function defined? It depends... 483

What just happened? Why wasn’t fly defined? 484

How to nest functions 485

How nesting affects scope 486

A little review of lexical scope 488

Where things get interesting with lexical scope 489

Functions Revisited 491

Calling a function (revisited) 492

What the heck is a closure? 495

Closing a function 496

Using closures to implement a magic counter 498

Looking behind the curtain... 499

Creating a closure by passing a function expression as an argument 501

The closure contains the actual environment, not a copy 502

Creating a closure with an event handler 503

How the Click me! closure works 506

table of contents

Wait a sec... what
is this closure thing? It
looks related to what
we’re doing. Maybe we can
get a leg up on her yet.

Darn it! Judy
was right again.

xxi

12 Creating objects

advanced object construction

So far we’ve been crafting objects by hand. For each object,

we’ve used an object literal to specify each and every property. That’s okay on a

small scale, but for serious code we need something better. That’s where object

constructors come in. With constructors we can create objects much more easily,

and we can create objects that all adhere to the same design blueprint—meaning

we can use constructors to ensure each object has the same properties and includes

the same methods. And with constructors we can write object code that is much

more concise and a lot less error prone when we’re creating lots of objects. So, let’s

get started and after this chapter you’ll be talking constructors just like you grew up in

Objectville.

Creating objects with object literals 522

Using conventions for objects 523

Introducing Object Constructors 525

How to create a Constructor 526

How to use a Constructor 527

How constructors work 528

You can put methods into constructors as well 530

It’s Production Time! 536

Let’s test drive some new cars 538

Don’t count out object literals just yet 539

Rewiring the arguments as an object literal 540

Reworking the Car constructor 541

Understanding Object Instances 543

Even constructed objects can have their own independent properties 546

Real World Constructors 548

The Array object 549

Even more fun with built-in objects 551

table of contents

xxii

13 Extra strength objects

using prototypes

Learning how to create objects was just the beginning. It’s

time to put some muscle on our objects. We need more ways to create relationships

between objects and to share code among them. And, we need ways to extend

and enhance existing objects. In other words, we need more tools. In this chapter,

you’re going to see that JavaScript has a very powerful object model, but one that

is a bit different than the status quo object-oriented language. Rather than the typical

class-based object-oriented system, JavaScript instead opts for a more powerful

prototype model, where objects can inherit and extend the behavior of other objects.

What is that good for? You’ll see soon enough. Let’s get started...

Hey, before we get started, we’ve got a better way to diagram our objects 565

Revisiting object constructors: we’re reusing code, but are we being efficient? 566

Is duplicating methods really a problem? 568

What are prototypes? 569

Inheriting from a prototype 570

How inheritance works 571

Overriding the prototype 573

How to set up the prototype 576

Prototypes are dynamic 582

A more interesting implementation of the sit method 584

One more time: how the sitting property works 585

How to approach the design of the show dogs 589

Setting up a chain of prototypes 591

How inheritance works in a prototype chain 592

Creating the show dog prototype 594

Creating a show dog Instance 598

A final cleanup of show dogs 602

Stepping through Dog.call 604

The chain doesn’t end at dog 607

Using inheritance to your advantage...by overriding built-in behavior 608

Using inheritance to your advantage...by extending a built-in object 610

Grand Unified Theory of Everything 612

Better living through objects 612

Putting it all together 613

What’s next? 613

table of contents

Object

toString()

hasOwnProperty()

// and more

species: "Canine"

Dog Prototype

bark()

run()

wag()

name: “Scotty”

breed: “Scottish Terrier”

weight: 15

handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()

bait()

gait()

groom()

xxiii

14 The top ten topics (we didn’t cover)

Appendix: Leftovers

We’ve covered a lot of ground, and

you’re almost finished with this book.

We’ll miss you, but before we let you go, we wouldn’t

feel right about sending you out into the world without a

little more preparation. We can’t possibly fit everything

you’ll need to know into this relatively small chapter.

Actually, we did originally include everything you need

to know about JavaScript Programming (not already

covered by the other chapters), by reducing the type

point size to .00004. It all fit, but nobody could read it.

So we threw most of it away, and kept the best bits for

this Top Ten appendix.This really is the end of the book.

Except for the index, of course (a must-read!).

#1 jQuery 624

#2 Doing more with the DOM 626

#3 The Window Object 627

#4 Arguments 628

#5 Handling exceptions 629

#6 Adding event handlers with addEventListener 630

#7 Regular Expressions 632

#8 Recursion 634

#9 JSON 636

#10 Server-side JavaScript 637

table of contents

i Index 641

