
Beijing • Cambridge • Köln • Sebastopol • Tokyo

Brett D. McLaughlin
Gary Pollice
David West

Head First Object-Oriented
Analysis and Design

Wouldn’t it be dreamy
if there was an analysis and

design book that was more fun
than going to an HR benefits

meeting? It’s probably nothing
but a fantasy...

hfoo_toc_ed00.indd 5 3/2/11 10:29 AM

ix

table of contents

Intro
Your brain on OOA&D. Here you are trying to learn something, while here your

brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking,

“Better leave room for more important things, like which wild animals to avoid and whether

naked snowboarding is a bad idea.” So how do you trick your brain into thinking that your

life depends on knowing object-oriented analysis and design?

Who is this book for?	 xxiv

We know what you’re thinking	 xxv

Metacognition	 xxvii

Bend your brain into submission	 xxix

Read Me	 xxx

The Technical Team	 xxxii

Acknowledgements	 xxxiii

Table of Contents (summary)
 Intro	 xxiii

1 	 Great Software Begins Here: well-designed apps rock	 1

2	 Give Them What They Want: gathering requirements	 55

3	 I Love You, You’re Perfect... Now Change: requirements change	 111

4	 Taking Your Software Into the Real World: analysis	 145

5	 Part 1: Nothing Ever Stays the Same: good design	 197

	 Interlude: OO CATASTROPHE	 221

	 Part 2: Give Your Software a 30-minute Workout: flexible software	 233

6	 “My Name is Art Vandelay”: solving really big problems	 279

7	 Bringing Order to Chaos: architecture	 323

8	 Originality is Overrated: design principles	 375

9	 The Software is Still for the Customer: iteration and testing	 423

10	 Putting It All Together: the ooa&d lifecycle	 483

	 Appendix I: leftovers	 557

	 Appendix II: welcome to objectville	 575	

Table of Contents (the real thing)

�

table of contents

1 Great Software Begins Here
So how do you really write great software? It’s never easy trying

to figure out where to start. Does the application actually do what it’s supposed to?

And what about things like duplicate code—that can’t be good, can it? It’s usually pretty

hard to know what you should work on first, and still make sure you don’t screw

everything else up in the process. No worries here, though. By the time you’re done

with this chapter, you’ll know how to write great software, and be well on your way

to improving the way you develop applications forever. Finally, you’ll understand why

OOAD is a four-letter word that your mother actually wants you to know about.

well-designed apps rock

Rock and roll is forever!					 2

Rick’s shiny new application				 	 3

What’s the FIRST thing you’d change?				 8

Great Software is...						 10

Great software in 3 easy steps					 13

Focus on functionality first					 18

Test drive							 23

Looking for problems					 25

Analysis							 26

Apply basic OO principles					 31

Design once, design twice					 36

How easy is it to change your applications?			 38

Encapsulate what varies					 41

Delegation						 43

Great software at last (for now)				 46

OOA&D is about writing great software			 49

Bullet Points						 50

How am I supposed to know where to start?
I feel like every time I get a new project to
work on, everyone’s got a different opinion

about what to do first. Sometimes I get it right, and
sometimes I end up reworking the whole app because I
started in the wrong place. I just want to write

great software! So what should I do first
in Rick’s app?

xi

table of contents

2 Give Them What They Want
Everybody loves a satisfied customer. You already know that the first

step in writing great software is making sure it does what the customer wants it to. But

how do you figure out what a customer really wants? And how do you make sure that

the customer even knows what they really want? That’s where good requirements

come in, and in this chapter, you’re going to learn how to satisfy your customer by

making sure what you deliver is actually what they asked for. By the time you’re done,

all of your projects will be “satisfaction guaranteed,” and you’ll be well on your way to

writing great software, every time.

gathering requirements

You’ve got a new programming gig			 	 56

Test drive							 59

Incorrect usage (sort of)					 61

What is a requirement?					 62

Creating a requirements list					 64

Plan for things going wrong					 68

Alternate paths handle system problems				 70

Introducing use cases					 72

One use case, three parts					 74

Check your requirements against your use cases			 78

Your system must work in the real world			 85

Getting to know the Happy Path				 92

OOA&D Toolbox						 106

1. The dog door opening must be at least 12”
tall.

2. A button on the remote control opens the
dog door if the door is closed, and closes
the dog door if the door is open.

3. Once the dog door has opened, it should
close automatically if the door isn’t
already closed.

Todd and Gina’s Dog Door, version 2.0
Requirements List

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the

remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
7. Fido goes back inside.
8. The door shuts automatically.

Todd and Gina’s Dog Door, version 2.0
What the Door Does

The System

The dog door and remote are part of the system, or inside the system.

xii

table of contents

3 I Love You, You’re Perfect... Now Change
Think you’ve got just what the customer wanted?
Not so fast... So you’ve talked to your customer, gathered requirements, written

out your use cases, and delivered a killer application. It’s time for a nice relaxing

cocktail, right? Right... until your customer decides that they really wanted something

different than what they told you. They love what you’ve done, really, but it’s not

quite good enough anymore. In the real world, requirements are always changing,

and it’s up to you to roll with these changes and keep your customer satisfied.

requirements change

You’re a hero!				 	 	 112

You’re a goat!						 113

The one constant in software analysis & design			 115

Original path? Alternate path? Who can tell?			 120

Use cases have to make sense to you				 122

Start to finish: a single scenario				 124

Confessions of an Alternate Path				 126

Finishing up the requirements list				 130

Duplicate code is a bad idea					 138

Final test drive						 140

Write your own design principle				 141

OOA&D Toolbox						 142

 public void pressButton() {
 System.out.println(“Pressing the remote control button...”);

 if (door.isOpen()) {
 door.close();
 } else {
 door.open();

 final Timer timer = new Timer();
 timer.schedule(new TimerTask() {
 public void run() {
 door.close();
 timer.cancel();
 }
 }, 5000);
 }
 } class

Remote {
 press-
Button()
}

Remote.java

xiii

table of contents

4 Taking Your Software into the Real World
It’s time to graduate to real-world applications.
Your application has to do more than work on your own personal development machine,

finely tuned and perfectly setup; your apps have to work when real people use them.

This chapter is all about making sure that your software works in a real-world context.

You’ll learn how textual analysis can take that use case you’ve been working on and

turn it into classes and methods that you know are what your customers want. And

when you’re done, you too can say: “I did it! My software is ready for the real world!”

analysis

One dog, two dog, three dog, four...			 	 146

Your software has a context					 147

Identify the problem					 148

Plan a solution						 149

A tale of two coders					 156

Delegation Detour						 160

The power of loosely coupled applications			 162

Pay attention to the nouns in your use case			 167

From good analysis to good classes...				 180

Class diagrams dissected					 182

Class diagrams aren’t everything				 187

Bullet Points						 191

class
DogDoor
{
 open()
}

DogDoor.java

The Real World

In the real world, there are
dogs, cats, rodents, and a host
of other problems, all set to
screw up your software.

In this context,
things go wrong a
lot more often.

Once I knew the classes and
operations that I needed, I

went back and updated my class
diagram.

xiv

table of contents

5 (part 1)
Nothing Ever Stays the Same
Change is inevitable. No matter how much you like your software right

now, it’s probably going to change tomorrow. And the harder you make it for

your software to change, the more difficult it’s going to be to respond to your

customer’s changing needs. In this chapter, we’re going to revisit an old friend,

try and improve an existing software project, and see how small changes can

turn into big problems. In fact, we’re going to uncover a problem so big that it will

take a TWO-PART chapter to solve it!

good design = flexible software

Rick’s Guitars is expanding				 	 198

Abstract classes						 201

Class diagrams dissected (again)				 206

UML Cheat Sheet 						 207

Design problem tipoffs					 213

3 steps to great software (revisited)				 215

5 (interlude)

$100$100$100$100$100

$200$200$200$200$200

$300$300$300$300$300

$400$400$400$400$400

Software
Neuroses

Maintenance
and Reuse

Code
Constructs

Famous
Designers

Risk
Avoidance

xv

table of contents

5 (part 2)
Give Your Software a 30-minute Workout
Ever wished you were just a bit more flexible?
When you run into problems making changes to your application, it probably

means that your software needs to be more flexible and resilient. To help stretch

your application out, you’re going to do some analysis, a whole lot of design, and

learn how OO principles can really loosen up your application. And for the grand

finale, you’ll see how higher cohesion can really help your coupling. Sound

interesting? Turn the page, and let’s get back to fixing that inflexible application.

good design = flexible software

Back to Rick’s search tool				 	 234

A closer look at the search() method				 237

The benefits of analysis					 238

Classes are about behavior					 241

Death of a design (decision)					 246

Turn bad design decisions into good ones			 247

“Double encapsulation” in Rick’s software			 249

Never be afraid to make mistakes				 255

Rick’s flexible application					 258

Test driving well-designed software				 261

How easy is it to change Rick’s software?			 265

The Great Ease-of-Change Challenge				 266

A cohesive class does one thing really well			 269

The design/cohesion lifecycle					 272

Great software is “good enough”				 274

OOA&D Toolbox						 276

xvi

table of contents

6 “My Name is Art Vandelay... I am an Architect”

It’s time to build something REALLY BIG. Are you ready?
You’ve got a ton of tools in your OOA&D toolbox, but how do you use those tools

when you have to build something really big? Well, you may not realize it, but

you’ve got everything you need to handle big problems. We’ll learn about some

new tools, like domain analysis and use case diagrams, but even these new tools

are based on things you already know about—like listening to the customer and

understanding what you’re going to build before you start writing code. Get ready...

it’s time to start playing the architect.

solving really big problems

Solving big problems				 	 280

It’s all in how you look at the big problem			 281

Requirements and use cases are a good place to start...		 286

Commonality and variability					 287

Figure out the features					 290

The difference between features and requirements		 292

Use cases don’t always help you see the big picture		 294

Use case diagrams						 296

The Little Actor						 301

Actors are people, too (well, not always)				 302

Let’s do a little domain analysis				 307

Divide and conquer					 309

Don’t forget who the customer really is				 313

What’s a design pattern?					 315

The power of OOA&D (and a little common sense)		 318

OOA&D Toolbox						 320Small
Problem

Small
Problem

Small
Problem

Small
Problem

Big
Problem

This BIG PROBLEM is
really just a collection of
functionalities, where each
piece of functionality is re

ally

a smaller problem on its own.

Small
Problem

xvii

table of contents

7 Bringing Order to Chaos
You have to start somewhere, but you better pick the right
somewhere! You know how to break your application up into lots of small

problems, but all that means is that you have LOTS of small problems. In this chapter,

we’re going to help you figure out where to start, and make sure that you don’t waste

any time working on the wrong things. It’s time to take all those little pieces laying

around your workspace, and figure out how to turn them into a well-ordered, well-

designed application. Along the way, you’ll learn about the all-important 3 Qs of

architecture, and how Risk is a lot more than just a cool war game from the ‘80s.

architecture

Feeling a little overwhelmed?				 	 324

We need an architecture					 326

Start with functionality					 329

What’s architecturally significant?				 331

The three Qs of architecture					 332

Reducing risk						 338

Scenarios help reduce risk					 341

Focus on one feature at a time				 349

Architecture is your design structure				 351

Commonality revisited					 355

Commonality Analysis: the path to flexible software		 361

What does it mean? Ask the customer				 366

Reducing risk helps you write great software			 371

Bullet Points						 372Gi
a

nt
 R

is
k-

O
-M

et
er

Unit
type: String
properties: Map
setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

Board.java

class
Unit {
 Unit(){
 }
}

Unit.java

class
Tile
{ ge-
tUnit()
}

Tile.java

class
Board
{ ge-
tUnit()
}

Not a chance in hell of
coming in on time.

One in a hundred that
you get it right.

Only a few things can
go really wrong.

As close to a sure
thing as software gets!

xviii

table of contents

8 Originality is Overrated
Imitation is the sincerest form of not being stupid. There’s

nothing as satisfying as coming up with a completely new and original solution to a

problem that’s been troubling you for days—until you find out someone else solved

the same problem, long before you did, and did an even better job than you did! In

this chapter, we’re going to look at some design principles that people have come up

with over the years, and how they can make you a better programmer. Lay aside your

thoughts of “doing it your way”; this chapter is about doing it the smarter, faster way.

design principles

Design principle roundup					 376

The Open-Closed Principle (OCP)			 	 377

The OCP, step-by-step					 379

The Don’t Repeat Yourself Principle (DRY)			 382

DRY is about one requirement in one place			 384

The Single Responsibility Principle (SRP)			 390

Spotting multiple responsibilities				 392

Going from multiple responsibilities to a single responsibility	 395

The Liskov Substitution Principle (LSP)				 400

Misusing subclassing: a case study in misuing inheritance		 401

LSP reveals hidden problems with your inheritance structure	 402

Subtypes must be substitutable for their base types		 403

Violating the LSP makes for confusing code			 404

Delegate functionality to another class				 406

Use composition to assemble behaviors from other classes		 408

Aggregation: composition, without the abrupt ending		 412

Aggregation versus composition				 413

Inheritance is just one option					 414

Bullet Points						 417

OOA&D Toolbox						 418

The Open-Closed
Principle

The Don’t Repeat Yourself Principle

The Single
Responsibility Principle

The Liskov
Substitution
Principle

xix

table of contents

9 The Software is Still for the Customer
It’s time to show the customer how much you really care.
Nagging bosses? Worried clients? Stakeholders that keep asking, “Will it be done on

time?” No amount of well-designed code will please your customers; you’ve got to

show them something working. And now that you’ve got a solid OO programming

toolkit, it’s time to learn how you can prove to the customer that your software

works. In this chapter, we learn about two ways to dive deeper into your software’s

functionality, and give the customer that warm feeling in their chest that makes them

say, Yes, you’re definitely the right developer for this job!

iterating and testing

Your toolbox is filling up				 	 424

You write great software iteratively				 426

Iterating deeper: two basic choices				 427

Feature driven development					 428

Use case driven development					 429

Two approaches to development				 430

Analysis of a feature					 434

Writing test scenarios					 437

Test driven development					 440

Commonality Analysis (redux)				 442

Emphasizing commonality					 446

Emphasizing encapsulation					 448

Match your tests to your design				 452

Test cases dissected...					 454

Prove yourself to the customer				 460

We’ve been programming by contract				 462

Programming by contract is about trust				 463

Defensive programming					 464

Break your apps into smaller chunks of functionality		 473

Bullet Points						 475

OOA&D Toolbox						 478

Unit
type: String
properties: Map
id: int
name: String
weapons: Weapon [*]

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object
getId(): int
setName(String)
getName(): String
addWeapon(Weapon)
getWeapons(): Weapon [*]

All the properties that were common across units are represented as variables outside of the properties Map.

Each of the new
properties gets its
own set of methods.

Sam figured that id
would get set in the Unit
constructor, so no need
for a setId() method.

xx

table of contents

10 Putting It All Together
Are we there yet? We’ve been working on lots of individual ways to

improve your software, but now it’s time to put it all together. This is it, what

you’ve been waiting for: we’re going to take everything you’ve been learning,

and show you how it’s all really part of a single process that you can use over

and over again to write great software.

the ooa&d lifecycle

Developing software, OOA&D style			 	 484

The Objectville Subway problem				 488

Objectville Subway Map					 490

Feature lists						 493

Use cases reflect usage, features reflect functionality		 499

Now start to iterate						 503

A closer look at representing a subway				 505

To use a Line, or not to use a Line				 514

Points of interest on the Objectville Subway (class)		 520

Protecting your classes					 523

Break time						 531

Back to the requirements phase				 533

Focus on code, then focus on customers				 535

Iteration makes problems easier				 539

What does a route look like?					 544

Check out Objectville for yourself !				 548

Iteration #3, anyone?					 551

The journey’s not over...					 555

Feature
List

Use Case
Diagrams

Break Up the
Problem

Requirements Domain
Analysis

Preliminary
Design

Implementation Delivery

Requirements List

Key Feature List

Class Diagram

Alternate Path

Analysis

Alternate Path

Design PatternEncapsulation

OO Principles
External Initiator

Textual Analysis

Test Scenario
Cohesion

Commonality

Scenario

Iteration
Feature Driven Development

Architecture

Delegation
Test Driven Development

Architecture

Talk to the Customer

Variability

Design Principles
Design Pattern

Iteration
Iteration

Iteration

Talk to the CustomerEncapsulation
Key Feature List

Design Principles

External Initiator

xxi

table of contents

i The Top Ten Topics (we didn’t cover)
Believe it or not, there’s still more. Yes, with over 550

pages under your belt, there are still things we couldn’t cram in. Even

though these last ten topics don’t deserve more than a mention, we didn’t

want to let you out of Objectville without a little more information on each

one of them. But hey, now you’ve got just a little bit more to talk about

during commercials of CATASTROPHE... and who doesn’t love some

stimulating OOA&D talk every now and then?

appendix i: leftovers

#1. IS-A and HAS-A		 		 	 558

#2. Use case formats					 560

#3. Anti-patterns						 563

#4. CRC cards						 564

#5. Metrics						 566

#6. Sequence diagrams					 567

#7. State diagrams						 568

#8. Unit testing						 570

#9. Coding standards and readable code			 572

#10. Refactoring						 574

Class: DogDoor
Description: Represents the physical dog door. This provides an interface

to the hardware that actually controls the door.
Responsibilities:

Name Collaborator

Open the door
Close the doorBe sure you write

down things that
this class does on its own, as well as things it collaborates with other classes on.

There’s no collaborato
r

class for these.

Anti Patterns

Anti-patterns are the reverse of design pat-

terns: they are common BAD solutions to

problems. These dangerous pitfalls should

be recognized and avoided.

xxii

table of contents

ii Speaking the Language of OO
Get ready to take a trip to a foreign country. It’s time to

visit Objectville, a land where objects do just what they’re supposed to,

applications are all well-encapsulated (you’ll find out exactly what that means

shortly), and designs are easy to reuse and extend. But before we can get

going, there are a few things you need to know first, and a little bit of language

skills you’re going to have to learn. Don’t worry, though, it won’t take long, and

before you know it, you’ll be speaking the language of OO like you’ve been

living in the well-designed areas of Objectville for years.

appendix ii: welcome to objectville

UML and class diagrams					 577

Inheritance						 579

Polymorphism						 581

Encapsulation						 582

Bullet Points						 586

Airplane
speed: int
getSpeed(): int
setSpeed(int)

This is how you show a
class in a class diagram.
That’s the way that
UML lets you represent
details about the classes
in your application.

This is the name of the class. It’s always in bold, at the top of the class diagram.

These are the member
variables of the class.
Each one has a name,
and then a type
after the colon.

This line separates the member variables from the methods of the class.
These are the methods of the class. Each one has a name, and then any parameters the method takes, and then a return type after the colon.

A class diagram makes it really easy
to see the big picture: you can easily

tell what a class does at a glance.
You can even leave out the variables
and/or methods if it helps you
communicate better.

