"Head First Statistics is by far the most entertaining, attention-catching study guide on the market. By presenting the material in an engaging manner, it provides students with a comfortable way to learn an otherwise cumbersome subject. The explanation of the topics is presented in a manner comprehensible to students of all levels."

- Ariana Anderson, Teaching Fellow/PhD candidate in Statistics, UCLA

"Head First Statistics is deceptively friendly. Breeze through the explanations and exercises and you just may find yourself raising the topic of normal vs. Poisson distribution in ordinary social conversation, which I can assure you is not advised!"

\author{

- Gary Wolf, Contributing Editor, Wired Magazine
}
"Dawn Griffiths has split some very complicated concepts into much smaller, less frightening, bits of stuff that real-life people will find very easy to digest. Lots of graphics and photos make the material very approachable, and I have developed quite a crush on the attractive lady model who is asking about gumballs on page 458."

- Bruce Frey, author of Statistics Hacks

"Head First is an intuitive way to understand statistics using simple, real-life examples that make learning fun and natural."

- Michael Prerau, computational neuroscientist and statistics instructor, Boston University

"Thought Head First was just for computer nerds? Try the brain-friendly way with statistics and you'll change your mind. It really works."

- Andy Parker

"This book is a great way for students to learn statistics - it is entertaining, comprehensive, and easy to understand. A perfect solution!"

- Danielle Levitt
"Down with dull statistics books! Even my cat liked this one."

Praise for other Head First books

"Kathy and Bert's Head First Java transforms the printed page into the closest thing to a GUI you've ever seen. In a wry, hip manner, the authors make learning Java an engaging 'what're they gonna do next?' experience."

-Warren Keuffel, Software Development Magazine

"Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head First Java covers a huge amount of practical matters that other texts leave as the dreaded "exercise for the reader..." It's clever, wry, hip and practical - there aren't a lot of textbooks that can make that claim and live up to it while also teaching you about object serialization and network launch protocols. "

> —Dr. Dan Russell, Director of User Sciences and Experience Research IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford University)
"It's fast, irreverent, fun, and engaging. Be careful-you might actually learn something!"

> -Ken Arnold, former Senior Engineer at Sun Microsystems Co-author (with James Gosling, creator of Java), The Java Programming Language
"I feel like a thousand pounds of books have just been lifted off of my head."

-Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

"Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies - gets my brain going without having to slog through a bunch of tired stale professor-speak."

-Travis Kalanick, Founder of Scour and Red Swoosh Member of the MIT TR100

"There are books you buy, books you keep, books you keep on your desk, and thanks to O'Reilly and the Head First crew, there is the penultimate category, Head First books. They're the ones that are dog-eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have for review is tattered and torn."

\author{

- Bill Sawyer, ATG Curriculum Manager, Oracle
}
"This book's admirable clarity, humor and substantial doses of clever make it the sort of book that helps even non-programmers think well about problem-solving."

\author{

- Cory Doctorow, co-editor of Boing Boing Author, Dozon and Out in the Magic Kingdom and Someone Comes to Tozon, Someone Leaves Town
}

Praise for other Head First books

"I received the book yesterday and started to read it....and I couldn't stop. This is definitely très 'cool.' It is fun, but they cover a lot of ground and they are right to the point. I'm really impressed."

- Erich Gamma, IBM Distinguished Engineer, and co-author of Design Patterns

"One of the funniest and smartest books on software design I've ever read."

- Aaron LaBerge, VP Technology, ESPN.com
"What used to be a long trial and error learning process has now been reduced neatly into an engaging paperback."
— Mike Davidson, CEO, Newsvine, Inc.
"Elegant design is at the core of every chapter here, each concept conveyed with equal doses of pragmatism and wit."
- Ken Goldstein, Executive Vice President, Disney Online
"I Head First HTML with CSS \& XHTML-it teaches you everything you need to learn in a 'fun coated' format."

\author{

- Sally Applin, UI Designer and Artist
}
"Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may sound, this book makes learning about design patterns fun.
"While other books on design patterns are saying 'Buehler... Buehler... Buehler...' this book is on the float belting out 'Shake it up, baby!""
- Eric Wuehler
"I literally love this book. In fact, I kissed this book in front of my wife."
- Satish Kumar

Other related books from O'Reilly

Statistics Hacks ${ }^{\text {TM }}$
Statistics in a Nutshell
Mind Hacks ${ }^{\text {TM }}$
Mind Performance Hacks ${ }^{\text {TM }}$
Your Brain: The Missing Manual

Other books in O'Reilly's Head First series

Head First Java ${ }^{\text {TM }}$
Head First Object-Oriented Analysis and Design (OOA\&D)
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Physics
Head First PHP \& MySQL (2008)
Head First Rails (2008)
Head First Web Design (2008)
Head First Algebra (2008)
Head First Programming (2009)

Head First Statistics

Dawn Griffiths

O'REILLY

Head First Statistics

by Dawn Griffiths

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O'Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:
Series Editor:

Editor:

Design Editor:

Cover Designers:

Production Editor:

Indexer:

Page Viewers:

Kathy Sierra, Bert Bates
Brett D. McLaughlin
Sanders Kleinfeld
Louise Barr
Louise Barr, Steve Fehler
Brittany Smith
Julie Hawks
David Griffiths, Mum and Dad

Printing History:

August 2008: First Edition.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The Head First series designations, Head First Statistics, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No snorers were harmed in the making of this book, although a horse lost its toupee at one point and suffered a minor indignity in front of the other horses. Also a snowboarder picked up a few bruises along the way, but nothing serious.

RepKover.
This book uses RepKover ${ }^{\text {ru, }}$ a durable and flexible lay-flat binding.

ISBN: 978-0-596-52758-7

To David, Mum, Dad, and Carl. Thanks for the support and believing I could do it. But you'll have to wait a while for the car.

Author of Head First Statistics

Dawn Griffiths started life as a mathematician at a top UK university. She was awarded a First-Class Honours degree in Mathematics, but she turned down a PhD scholarship studying particularly rare breeds of differential equations when she realized people would stop talking to her at parties. Instead she pursued a career in software development, and she currently combines IT consultancy with writing and mathematics.

When Dawn's not working on Head First books, you'll find her honing her Tai Chi skills, making bobbin lace or cooking nice meals. She hasn't yet mastered the art of doing all three at the same time. She also enjoys traveling, and spending time with her lovely husband, David.

Dawn has a theory that Head First Bobbin

Lacemaking might prove to a be a big cult hit, but she suspects that Brett and Laurie might disagree.

Table of Contents (Summary)

Intro xxvii
1 Visualizing Information: First Impressions 1
2 Measuring Central Tendency: The Middle Way 45
3 Measuring Spread: Power Ranges 83
4 Calculating Probabilities: Taking Chances 127
5 Discrete Probability Distributions: Manage Your Expectations 197
6 Permutations and Combinations: Making Arrangements 241
7 Geometric, Binomial, and Poisson Distributions: Keeping Things Discrete 269
8 Normal Distribution: Being Normal 325
9 Normal Distribution Part II: Beyond Normal 361
10 Using Statistical Sampling: Taking Samples 415
11 Estimating Your Population: Making Predictions 441
12 Constructing Confidence Intervals: Guessing with Confidence 487
13 Using Hypothesis Tests: Look at the Evidence 521
14 The Chi Square Distribution: There's Something Going on 567
15 Correlation and Regression: What's My Line? 605
i Appendix i: Top Ten Things We Didn't Cover 643
ii Appendix ii: Statistics Tables 657

Table of Contents (the real thing)

Intro

Your brain on statistics. Here you are trying to learn something, while here your brain is doing you a favor by making sure the learning doesn't stick. Your brain's thinking,"Better leave room for more important things, like which wild animals to avoid and whether naked snowboarding is a bad idea." So how do you trick your brain into thinking that your life depends on knowing statistics?
Who is this book for? xxviii
We know what you're thinking xxix
Metacognition xxxi
Bend your brain into submission xxxiii
Read me xxxiv
The technical review team xxxvi
Acknowledgments xxxvii

Visualizing information

1

First Impressions

Can't tell your facts from your figures?

Statistics help you make sense of confusing sets of data. They make the complex simple. And when you've found out what's really going on, you need a way of visualizing it and telling everyone else. So if you want to pick the best chart for the job, grab your coat, pack your best slide rule, and join us on a ride to Statsville.

Statistics are everywhere 2
But why learn statistics? 3
A tale of two charts 4
The humble pie chart 8
Bar charts can allow for more accuracy 10
$\begin{array}{ll}\text { Vertical bar charts } & 10\end{array}$
Horizontal bar charts 11
It's a matter of scale 12
Using frequency scales 13
Dealing with multiple sets of data 14
Categories vs. numbers 18
Dealing with grouped data 19
Make a histogram 20
Step 1: Find the bar widths 26
Step 2: Find the bar heights 27
Step 3: Draw your chart 28
Introducing cumulative frequency 34
Drawing the cumulative frequency graph 35
Choosing the right chart 39

measuring central tendency

The Middle Way

Sometimes you just need to get to the heart of the matter.

It can be difficult to see patterns and trends in a big pile of figures, and finding the average is often the first step towards seeing the bigger picture. With averages at your disposal, you'll be able to quickly find the most representative values in your data and draw important conclusions. In this chapter, we'll look at several ways to calculate one of the most important statistics in town-mean, median, and modeand you'll start to see how to effectively summarize data as concisely and usefully as possible.

The) ${ }^{\text {P }}$ (eath Club Statsville's Premier Spa

Welcome to the Health Club 46
A common measure of average is the mean 47
Mean math 48
Dealing with unknowns 49
Back to the mean 50
Back to the Health Club 53
Everybody was Kung Fu fighting 54
Our data has outliers 57
The outliers did it 58
Watercooler conversation 60
Finding the median 61
How to find the median in three steps: 62
Business is booming 65
The Little Ducklings swimming class 66
What went wrong with the mean and median? 69
What should we do for data like this? 69
The Mean Exposed 71
Introducing the mode 73
Three steps for finding the mode 74

Age 19

measuring variability and spread

3

Power Ranges

Not everything's reliable, but how can you tell?

Averages do a great job of giving you a typical value in your data set, but they don't tell you the full story. OK, so you know where the center of your data is, but often the mean, median, and mode alone aren't enough information to go on when you're summarizing a data set. In this chapter, we'll show you how to take your data skills to the next level as we begin to analyze ranges and variation.

Wanted: one player 84
We need to compare player scores 85
Use the range to differentiate between data sets 86
The problem with outliers 89
We need to get away from outliers 91
Quartiles come to the rescue 92
The interquartile range excludes outliers 93
Quartile anatomy 94
We're not just limited to quartiles 98
So what are percentiles? 99
Box and whisker plots let you visualize ranges 100
Variability is more than just spread 104
Calculating average distances 105
We can calculate variation with the variance... 106
...but standard deviation is a more intuitive measure 107
Standard Deviation Exposed 108
A quicker calculation for variance 113
What if we need a baseline for comparison? 118
Use standard scores to compare values across data sets 119
Interpreting standard scores 120
Statsville All Stars win the league! 125

calculating probabilities

4

Taking Chances

Life is full of uncertainty.

Sometimes it can be impossible to say what will happen from one minute to the next. But certain events are more likely to occur than others, and that's where probability theory comes into play. Probability lets you predict the future by assessing how likely outcomes are, and knowing what could happen helps you make informed decisions. In this chapter, you'll find out more about probability and learn how to take control of the future!

using discrete probaboility distributions

5

Manage Your Expectations

Unlikely events happen, but what are the consequences?

So far we've looked at how probabilities tell you how likely certain events are. What probability doesn't tell you is the overall impact of these events, and what it means to you. Sure, you'll sometimes make it big on the roulette table, but is it really worth it with all the money you lose in the meantime? In this chapter, we'll show you how you can use probability to predict long-term outcomes, and also measure the certainty of these predictions.

Back at Fat Dan's Casino 198
We can compose a probability distribution for the slot machine 201
Expectation gives you a prediction of the results.. 204
...and variance tells you about the spread of the results 205
Variances and probability distributions 206
Let's calculate the slot machine's variance 207
Fat Dan changed his prices 212
There's a linear relationship between $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})$ 217
Slot machine transformations 218
General formulas for linear transforms 219
Every pull of the lever is an independent observation 222
Observation shortcuts 223
New slot machine on the block 229
Add $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})$ to get $\mathrm{E}(\mathrm{X}+\mathrm{Y})$.. 230
...and subtract $\mathrm{E}(\mathrm{X})$ and $\mathrm{E}(\mathrm{Y})$ to get $\mathrm{E}(\mathrm{X}-\mathrm{Y})$ 231
You can also add and subtract linear transformations 232
Jackpot! 238

permutations and combinations

6

Making Arrangements

Sometimes, order is important.

Counting all the possible ways in which you can order things is time consuming, but the trouble is, this sort of information is crucial for calculating some probabilities. In this chapter, we'll show you a quick way of deriving this sort of information without you having to figure out what all of the possible outcomes are. Come with us and we'll show you how to count the possibilities.
The Statsville Derby 242
It's a three-horse race 243
How many ways can they cross the finish line? 245
Calculate the number of arrangements 246

Going round in circles 247
It's time for the novelty race 251
Arranging by individuals is different than arranging by type 252
We need to arrange animals by type 253
Generalize a formula for arranging duplicates 254
It's time for the twenty-horse race 257
How many ways can we fill the top three positions? 258
Examining permutations 259
What if horse order doesn't matter 260
Examining combinations 261
Combination Exposed 262
Does order really matter? 262
It's the end of the race 268

geometric, binomial, and poisson distributions

7

Keeping Things Discrete

Calculating probability distributions takes time.

So far we've looked at how to calculate and use probability distributions, but wouldn't it be nice to have something easier to work with, or just quicker to calculate? In this chapter, we'll show you some special probability distributions that follow very definite patterns. Once you know these patterns, you'll be able to use them to calculate probabilities, expectations, and variances in record time. Read on, and we'll introduce you to the geometric, binomial and Poisson distributions.

Popcorn machine

Drinks machine

xvi

We need to find Chad's probability distribution 273
There's a pattern to this probability distribution274
The probability distribution can be represented algebraically 277
The geometric distribution also works with inequalities 279
The pattern of expectations for the geometric distribution 280
Expectation is $1 / \mathrm{p}$ 281
Finding the variance for our distribution 283
A quick guide to the geometric distribution 284
Who Wants to Win a Swivel Chair! 287
You've mastered the geometric distribution 287
Should you play, or walk away? 291
Generalizing the probability for three questions 293
Let's generalize the probability further 296
What's the expectation and variance? 298
Binomial expectation and variance 301
Your quick guide to the binomial distribution 302
Expectation and variance for the Poisson distribution 308
So what's the probability distribution? 312
Combine Poisson variables 313
The Poisson in disguise 316
Your quick guide to the Poisson distribution 319

using the normal distribution

8

Being Normal

Discrete probability distributions can't handle every situation.

So far we've looked at probability distributions where we've been able to specify exact values, but this isn't the case for every set of data. Some types of data just don't fit the probability distributions we've encountered so far. In this chapter, we'll take a look at how continuous probability distributions work, and introduce you to one of the most important probability distributions in town-the normal distribution.

Discrete data takes exact values... 326
...but not all numeric data is discrete 327
What's the delay? 328
We need a probability distribution for continuous data 329
Probability density functions can be used for continuous data 330
Probability $=$ area 331
To calculate probability, start by finding $\mathrm{f}(\mathrm{x}) \ldots$ 332
...then find probability by finding the area 333
We've found the probability 337
Searching for a soul mate 338
Male modelling 339
The normal distribution is an "ideal" model for continuous data 340
So how do we find normal probabilities? 341
Three steps to calculating normal probabilities 342
Step 1: Determine your distribution 343
Step 2: Standardize to $\mathrm{N}(0,1)$ 344
To standardize, first move the mean... 345
...then squash the width 345
Now find Z for the specific value you want to find probability for 346
Step 3: Look up the probability in your handy table 349

using the normal distribution ii

Beyond Normal

If only all probability distributions were normal.

Life can be so much simpler with the normal distribution. Why spend all your time working out individual probabilities when you can look up entire ranges in one swoop, and still leave time for game play? In this chapter, you'll see how to solve more complex problems in the blink of an eye, and you'll also find out how to bring some of that normal goodness to other probability distributions.

using statistical sampling

10

Taking Samples

Statistics deal with data, but where does it come from?

Some of the time, data's easy to collect, such as the ages of people attending a health club or the sales figures for a games company. But what about the times when data isn't so easy to collect? Sometimes the number of things we want to collect data about are so huge that it's difficult to know where to start. In this chapter, we'll take a look at how you can effectively gather data in the real world, in a way that's efficient, accurate, and can also save you time and money to boot. Welcome to the world of sampling.
The Mighty Gumball taste test 416
They're running out of gumballs 417
Test a gumball sample, not the whole gumball population 418
How sampling works 419
When sampling goes wrong 420
How to design a sample 422
Define your sampling frame 423
Sometimes samples can be biased 424
Sources of bias 425
How to choose your sample 430
Simple random sampling 430
How to choose a simple random sample 431
There are other types of sampling 432
We can use stratified sampling... 432
...or we can use cluster sampling... 433
...or even systematic sampling 433
Mighty Gumball has a sample 439

estimating your population

Making Predictions

Wouldn't it be great if you could tell what a population was like, just by taking one sample?

Before you can claim full sample mastery, you need to know how to use your samples to best effect once you've collected them. This means using them to accurately predict what the population will be like and coming up with a way of saying how reliable your predictions are. In this chapter, we'll show you how knowing your sample helps you get to know your population, and vice versa.

So how long does flavor really last for? 442
Let's start by estimating the population mean 443
Point estimators can approximate population parameters 444
Let's estimate the population variance 448
We need a different point estimator than sample variance 449
Which formula's which? 451
It's a question of proportion 454
So how does this relate to sampling? 459
The sampling distribution of proportions 460
So what's the expectation of P_{s} ? 462
And what's the variance of P_{s} ? 463
Find the distribution of P 464
P_{s} follows a normal distribution 465
We need probabilities for the sample mean 471
The sampling distribution of the mean 472
Find the expectation for X 474
What about the the variance of X? 476
So how is X distributed? 480
If n is large, X can still be approximated by the normal distribution 481
Using the central limit theorem 482

constructing confidence intervals

12

Guessing with Confidence

Sometimes samples don't give quite the right result.

You've seen how you can use point estimators to estimate the precise value of the population mean, variance, or proportion, but the trouble is, how can you be certain that your estimate is completely accurate? After all, your assumptions about the population rely on just one sample, and what if your sample's off? In this chapter, you'll see another way of estimating population statistics, one that allows for uncertainty. Pick up your probability tables, and we'll show you the ins and outs of confidence intervals.
Mighty Gumball is in trouble 488
The problem with precision 489
Introducing confidence intervals 490
Four steps for finding confidence intervals 491
Step 1: Choose your population statistic 492
Step 2: Find its sampling distribution 492
Step 3: Decide on the level of confidence 494
Step 4: Find the confidence limits 496
Start by finding Z 497
Rewrite the inequality in terms of m 498
Finally, find the value of X 501
You've found the confidence interval 502
Let's summarize the steps 503
Handy shortcuts for confidence intervals 504
Step 1: Choose your population statistic 508
Step 2: Find its sampling distribution 509
Step 3: Decide on the level of confidence 512
Step 4: Find the confidence limits 513
The t-distribution vs. the normal distribution 515

using hypothesis tests

Look at the Evidence

Not everything you're told is absolutely certain.

The trouble is, how do you know when what you're being told isn't right? Hypothesis tests give you a way of using samples to test whether or not statistical claims are likely to be true. They give you a way of weighing the evidence and testing whether extreme results can be explained by mere coincidence, or whether there are darker forces at work. Come with us on a ride through this chapter, and we'll show you how you can use hypothesis tests to confirm or allay your deepest suspicions.

Statsville's new miracle drug 522
Resolving the conflict from 50,000 feet 526
The six steps for hypothesis testing 527
Step 1: Decide on the hypothesis 528
Step 2: Choose your test statistic 531
Step 3: Determine the critical region 532
Step 4: Find the p-value 535
Step 5: Is the sample result in the critical region? 537
Step 6: Make your decision 537
What if the sample size is larger? 540
Let's conduct another hypothesis test 543
Step 1: Decide on the hypotheses 543
Step 2: Choose the test statistic 544
Use the normal to approximate the binomial in our test statistic 547
Step 3: Find the critical region 548
Let's start with Type I errors 556
What about Type II errors? 557
Finding errors for SnoreCull 558
We need to find the range of values 559
Find P (Type II error) 560
Introducing power 561

the χ^{2} distribution
 There's Something Going On...

Sometimes things don't turn out quite the way you expect.

When you model a situation using a particular probability distribution, you have a good idea of how things are likely to turn out long-term. But what happens if there are differences between what you expect and what you get? How can you tell whether your discrepancies come down to normal fluctuations, or whether they're a sign of an underlying problem with your probability model instead? In this chapter, we'll show you how you can use the X^{2} distribution to analyze your results and sniff out suspicious results.
There may be trouble ahead at Fat Dan's Casino 568
Let's start with the slot machines 569
The χ^{2} test assesses difference 571
So what does the test statistic represent? 572
Two main uses of the χ^{2} distribution 573
\vee represents degrees of freedom 574
What's the significance? 575
Hypothesis testing with χ^{2} 576
You've solved the slot machine mystery 579
Fat Dan has another problem 585
The χ^{2} distribution can test for independence 586
You can find the expected frequencies using probability 587
So what are the frequencies? 588
We still need to calculate degrees of freedom 591
Generalizing the degrees of freedom 596
And the formula is... 597
You've saved the casino 599

correlation and regression

15

What's My Line?

Have you ever wondered how two things are connected?

So far we've looked at statistics that tell you about just one variable—like men's height, points scored by basketball players, or how long gumball flavor lasts-but there are other statistics that tell you about the connection between variables. Seeing how things are connected can give you a lot of information about the real world, information that you can use to your advantage. Stay with us while we show you the key to spotting connections: correlation and regression.

Let's analyze sunshine and attendance 607
Exploring types of data 608
Visualizing bivariate data 609
Scatter diagrams show you patterns 612
Correlation vs. causation 614
Predict values with a line of best fit 618
Your best guess is still a guess 619
We need to minimize the errors 620
Introducing the sum of squared errors 621
Find the equation for the line of best fit 622
Finding the slope for the line of best fit 623
Finding the slope for the line of best fit, continued 624
We've found b, but what about a ? 625
You've made the connection 629
Let's look at some correlations 630
The correlation coefficient measures how well the line fits the data 631
There's a formula for calculating the correlation coefficient, r 632
Find r for the concert data 633
Find r for the concert data, continued 634

leftovers

The Top Ten Things (we didn't cover)

Even after all that, there's a bit more. There are just a few more things we think you need to know. We wouldn't feel right about ignoring them, even though they only need a brief mention. So before you put the book down, take a read through these short but important statistics tidbits.

\#1. Other ways of presenting data 644
\#2. Distribution anatomy 645
\#3. Experiments 646
\#4. Least square regression alternate notation 648
\#5. The coefficient of determination 649
\#6. Non-linear relationships 650
\#7. The confidence interval for the slope of a regression line 651
\#8. Sampling distributions - the difference between two means 652
\#9. Sampling distributions - the difference between two proportions 653
\#10. $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$ for continuous probability distributions 654

statistics tables

Looking Things up

Where would you be without your trusty probability tables?

Understanding your probability distributions isn't quite enough. For some of them, you need to be able to look up your probabilities in standard probability tables. In this appendix you'll find tables for the normal, \mathbf{t} and \mathbf{X}^{2} distributions so you can look up probabilities to your heart's content.

Standard normal probabilities 658
t-distribution critical values 660
χ^{2} critical values 661

