
Lessons Learned in
Software Testing

A Context-Driven Approach

Cem Kaner
James Bach

Bret Pettichord

John Wiley & Sons, Inc.

Wiley Computer Publishing

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

71208_Kaner_FMI 11/28/01 11:30 AM Page iii

Publisher: Robert Ipsen
Editor: Margaret Eldridge
Assistant Editor: Adaobi Obi
Managing Editor: Micheline Frederick
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed
as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim,
the product names appear in initial capital or ALL CAPITAL LETTERS. Readers,
however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by Cem Kaner, James Bach, Bret Pettichord. All rights reserved.
Published by John Wiley & Sons, Inc., New York.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605
Third Avenue, New York, NY 10158-0012, (212) 850-6011,
fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in professional services. If professional advice or other
expert assistance is required, the services of a competent professional person
should be sought.

Library of Congress Cataloging-in-Publication Data:

Kaner, Cem.
Lessons learned in software testing : a context-driven approach / Cem Kaner,

James Bach, Bret Pettichord.
p. cm.

“Wiley Computer Publishing.”
Includes bibliographical references and index.
ISBN 0-471-08112-4 (pbk. : alk. paper)

1. Computer software—Testing. I. Bach, James. II. Pettichord, Bret. III. Title.

QA76.76.T48 K34 2001
005.1'4—dc21 2001046886

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

71208_Kaner_FMI 11/28/01 11:30 AM Page iv

http://PERMREQ @ WILEY.COM

Installing Custom Controls VD E D I C AT I O N

To Brian Marick and Sam Guckenheimer, who set the spark for this book.

To Dave Gelperin, who believed in us and built a community.

To Jerry Weinberg, whose life and work embodies the highest ideals of an
expert tester.

In memoriam, Anna Allison, colleague and friend, September 30, 1952–
September 11, 2001.

71208_Kaner_FMI 11/28/01 11:30 AM Page v

vii

C O N T E N TS

Lessons ix

Foreword xvii

Preface xix

Acknowledgments xxvii

Chapter 1 The Role of the Tester 1

Chapter 2 Thinking Like a Tester 11

Chapter 3 Testing Techniques 31

Chapter 4 Bug Advocacy 65

Chapter 5 Automating Testing 93

Chapter 6 Documenting Testing 129

Chapter 7 Interacting with Programmers 143

Chapter 8 Managing the Testing Project 151

Chapter 9 Managing the Testing Group 189

Chapter 10 Your Career in Software Testing 209

Chapter 11 Planning the Testing Strategy 231

Appendix The Context-Driven Approach to Software Testing 261

Bibliography 265

Index 275

71208_Kaner_FMI 11/28/01 11:30 AM Page vii

L E S S O N S

Chapter 1 The Role of the Tester

Lesson 1 You are the headlights of the project 1
Lesson 2 Your mission drives everything you do 2
Lesson 3 You serve many clients 3
Lesson 4 You discover things that will “bug” someone whose opinion matters 4
Lesson 5 Find important bugs fast 4
Lesson 6 Run with the programmers 5
Lesson 7 Question everything, but not necessarily out loud 5
Lesson 8 You focus on failure, so your clients can focus on success 6
Lesson 9 You will not find all the bugs 6

Lesson 10 Beware of testing “completely” 7
Lesson 11 You don’t assure quality by testing 8
Lesson 12 Never be the gatekeeper! 8
Lesson 13 Beware of the not-my-job theory of testing 8
Lesson 14 Beware of becoming a process improvement group 9
Lesson 15 Don’t expect anyone to understand testing, or what you need

to do it well 10

Chapter 2 Thinking Like a Tester

Lesson 16 Testing is applied epistemology 11
Lesson 17 Studying epistemology helps you test better 12
Lesson 18 Testing is grounded in cognitive psychology 13
Lesson 19 Testing is in your head 14
Lesson 20 Testing requires inference, not just comparison of output to

expected results 14
Lesson 21 Good testers think technically, creatively, critically, and practically 15
Lesson 22 Black box testing is not ignorance-based testing 15
Lesson 23 A tester is more than a tourist 16
Lesson 24 All tests are an attempt to answer some question 16
Lesson 25 All testing is based on models 17
Lesson 26 Intuition is a fine beginning, but a lousy conclusion 17
Lesson 27 To test, you must explore 17
Lesson 28 Exploring involves a lot of thinking 18
Lesson 29 Use the logic of abductive inference to discover conjectures. 19
Lesson 30 Use the logic of conjecture and refutation to evaluate a product 20
Lesson 31 A requirement is a quality or condition that matters to someone

who matters 20

ix

71208_Kaner_FMI 11/28/01 11:30 AM Page ix

Lesson 32 You discover requirements by conference, inference, and reference 21
Lesson 33 Use implicit as well as explicit specifications 22
Lesson 34 “It works” really means it appears to meet some requirement to

some degree 23
Lesson 35 In the end, all you have is an impression of the product 23
Lesson 36 Don’t confuse the test with the testing 23
Lesson 37 When testing a complex product: plunge in and quit 24
Lesson 38 Use heuristics to quickly generate ideas for tests 25
Lesson 39 You can’t avoid bias, but you can manage it 25
Lesson 40 You’re harder to fool if you know you’re a fool 26
Lesson 41 When you miss a bug, check whether the miss is surprising or just

the natural outcome of your strategy 27
Lesson 42 Confusion is a test tool 27
Lesson 43 Fresh eyes find failure 28
Lesson 44 Avoid following procedures unless they followed you first 28
Lesson 45 When you do create test procedures, avoid “1287” 29
Lesson 46 One important outcome of a test process is a better, smarter tester 29
Lesson 47 You can’t master testing unless you reinvent it 30

Chapter 3 Testing Techniques

Lesson 48 Testing combines techniques that focus on testers, coverage,
potential problems, activities, and evaluation 32

Lesson 49 People-based techniques focus on who does the testing 34
Lesson 50 Coverage-based techniques focus on what gets tested 35
Lesson 51 Problems-based techniques focus on why you’re testing (the risks

you’re testing for) 39
Lesson 52 Activity-based techniques focus on how you test 40
Lesson 53 Evaluation-based techniques focus on how to tell whether the test

passed or failed 42
Lesson 54 The classification of a technique depends on how you think about it 43

Chapter 4 Bug Advocacy

Lesson 55 You are what you write 65
Lesson 56 Your advocacy drives the repair of the bugs you report 66
Lesson 57 Make your bug report an effective sales tool 66
Lesson 58 Your bug report is your representative 67
Lesson 59 Take the time to make your bug reports valuable 68
Lesson 60 Any stakeholder should be able to report a bug 68
Lesson 61 Be careful about rewording other people’s bug reports 69
Lesson 62 Report perceived quality gaps as bugs 69
Lesson 63 Some stakeholders cannot report bugs—you’re their proxy 69
Lesson 64 Draw the affected stakeholder’s attention to controversial bugs 70
Lesson 65 Never use the bug-tracking system to monitor programmers’ performance 70
Lesson 66 Never use the bug-tracking system to monitor testers’ performance 71
Lesson 67 Report defects promptly 71
Lesson 68 Never assume that an obvious bug has already been filed 71
Lesson 69 Report design errors 71

L E S S O N Sx

71208_Kaner_FMI 11/28/01 11:30 AM Page x

Lesson 70 Extreme-looking bugs are potential security flaws 73
Lesson 71 Uncorner your corner cases 73
Lesson 72 Minor bugs are worth reporting and fixing 74
Lesson 73 Keep clear the difference between severity and priority 75
Lesson 74 A failure is a symptom of an error, not the error itself 76
Lesson 75 Do follow-up testing on seemingly minor coding errors 76
Lesson 76 Always report nonreproducible errors; they may be time bombs 77
Lesson 77 Nonreproducible bugs are reproducible 78
Lesson 78 Be conscious of the processing cost of your bug reports 79
Lesson 79 Give special handling to bugs related to the tools or environment 80
Lesson 80 Ask before reporting bugs against prototypes or early private versions 81
Lesson 81 Duplicate bug reports are a self-correcting problem 82
Lesson 82 Every bug deserves its own report 82
Lesson 83 The summary line is the most important line in the bug report 83
Lesson 84 Never exaggerate your bugs 83
Lesson 85 Report the problem clearly, but don’t try to solve it 84
Lesson 86 Be careful of your tone. Every person you criticize will see the report 85
Lesson 87 Make your reports readable, even to people who are exhausted and cranky 85
Lesson 88 Improve your reporting skills 86
Lesson 89 Use market or support data when appropriate 86
Lesson 90 Review each other’s bug reports 87
Lesson 91 Meet the programmers who will read your reports 87
Lesson 92 The best approach may be to demonstrate your bugs to the programmers 88
Lesson 93 When the programmer says it’s fixed, make sure it isn’t still broken 88
Lesson 94 Verify bug fixes promptly 88
Lesson 95 When fixes fail, talk with the programmer 89
Lesson 96 Bug reports should be closed by testers 89
Lesson 97 Don’t insist that every bug be fixed. Pick your battles 90
Lesson 98 Don’t let deferred bugs disappear 90
Lesson 99 Testing inertia should never be the cause of bug deferral 91

Lesson 100 Appeal bug deferrals immediately 91
Lesson 101 When you decide to fight, decide to win! 91

Chapter 5 Automating Testing

Lesson 102 Speed the development process instead of trying to save a few
dollars on testing 94

Lesson 103 Expand your reach instead of trying to repeat the same tests over and over 95
Lesson 104 Select your automation strategy based on your context 96
Lesson 105 Don’t mandate 100 percent automation 97
Lesson 106 A test tool is not a strategy 98
Lesson 107 Don’t automate a mess 98
Lesson 108 Don’t equate manual testing to automated testing 99
Lesson 109 Don’t estimate the value of a test in terms of how often you run it 100
Lesson 110 Automated regression tests find a minority of the bugs 101
Lesson 111 Consider what bugs you aren’t finding while you automate tests 101
Lesson 112 The problem with bad automation is that no one may notice 102
Lesson 113 Capture replay fails 103

L E S S O N S xi

71208_Kaner_FMI 11/28/01 11:30 AM Page xi

Lesson 114 Test tools are buggy 104
Lesson 115 User interfaces change 106
Lesson 116 Select GUI test tools based on compatibility, familiarity, and service 107
Lesson 117 Automated regression tests die 108
Lesson 118 Test automation is a software development process 109
Lesson 119 Test automation is a significant investment 109
Lesson 120 Test automation projects require skills in programming, testing, and

project management 110
Lesson 121 Use pilot projects to prove feasibility 111
Lesson 122 Have testers and programmers charter automation projects 111
Lesson 123 Design automated tests to facilitate review 112
Lesson 124 Don’t skimp on automated test design 112
Lesson 125 Avoid complex logic in your test scripts 113
Lesson 126 Don’t build test libraries simply to avoid repeating code 113
Lesson 127 Data-driven test automation makes it easy to run lots of test variants 114
Lesson 128 Keyword-driven test automation makes it easy for nonprogrammers

to create tests 115
Lesson 129 Use automated techniques to generate test inputs 116
Lesson 130 Separate test generation from test execution 117
Lesson 131 Use standard scripting languages 117
Lesson 132 Automate tests using programming interfaces 119
Lesson 133 Encourage the development of unit test suites 120
Lesson 134 Beware of using automators who don’t understand testing 121
Lesson 135 Avoid automators who don’t respect testing 122
Lesson 136 Testability is often a better investment than automation 122
Lesson 137 Testability is visibility and control 123
Lesson 138 Start test automation early 124
Lesson 139 Give centralized automation teams clear charters 125
Lesson 140 Automate for immediate impact 126
Lesson 141 You may have more test tools than you realize 126

Chapter 6 Documenting Testing

Lesson 142 To apply a solution effectively, you need to understand the problem
clearly 131

Lesson 143 Don’t use test documentation templates: A template won’t help
unless you don’t need it 131

Lesson 144 Use test documentation templates: They foster consistent communication 132
Lesson 145 Use the IEEE Standard 829 for test documentation 132
Lesson 146 Don’t use the IEEE Standard 829 133
Lesson 147 Analyze your requirements before deciding what products to build;

this applies as much to your documentation as to your software 136
Lesson 148 To analyze your test documentation requirements, ask questions like

the ones in this list 136
Lesson 149 Summarize your core documentation requirements in one sentence

with no more than three components 141

L E S S O N Sxii

71208_Kaner_FMI 11/28/01 11:30 AM Page xii

Chapter 7 Interacting with Programmers

Lesson 150 Understand how programmers think 144
Lesson 151 Develop programmers’ trust 145
Lesson 152 Provide service 145
Lesson 153 Your integrity and competence will demand respect 146
Lesson 154 Focus on the work, not the person 147
Lesson 155 Programmers like to talk about their work. Ask them questions 148
Lesson 156 Programmers like to help with testability 149

Chapter 8 Managing the Testing Project

Lesson 157 Create a service culture 151
Lesson 158 Don’t try to create a control culture 152
Lesson 159 Develop the power of the king’s ear 152
Lesson 160 You manage the subproject that provides testing services, not the

development project 153
Lesson 161 All projects evolve. Well-run projects evolve well 154
Lesson 162 There are always late changes 154
Lesson 163 Projects involve a tradeoff among features, reliability, time, and money 155
Lesson 164 Let the project manager choose the project lifecycle 156
Lesson 165 Waterfall lifecycles pit reliability against time 156
Lesson 166 Evolutionary lifecycles pit features against time 158
Lesson 167 Be willing to allocate resources to the project early in development 159
Lesson 168 Contract-driven development is different from market-seeking

development 160
Lesson 169 Ask for testability features 161
Lesson 170 Negotiate the schedules for builds 161
Lesson 171 Understand what programmers do (and don’t do) before delivering builds 162
Lesson 172 Be prepared for the build 162
Lesson 173 Sometimes you should refuse to test a build 162
Lesson 174 Use smoke tests to qualify a build 163
Lesson 175 Sometimes, the right decision is to stop the test and fix cycle and

redesign the software 163
Lesson 176 Adapt your processes to the development practices that are actually in use 164
Lesson 177 “Project documents are interesting fictions: Useful, but never sufficient” 165
Lesson 178 Don’t ask for items unless you will use them 165
Lesson 179 Take advantage of other sources of information 166
Lesson 180 Flag configuration management problems to the project manager 167
Lesson 181 Programmers are like tornadoes 168
Lesson 182 Great test planning makes late changes easy 168
Lesson 183 Test opportunities arise whenever one person hands off an artifact to

another 170
Lesson 184 There is no universal formula for knowing how much testing is enough 170
Lesson 185 “Enough testing” means “enough information for my clients to make

good decisions” 170
Lesson 186 Never budget for just two testing cycles 171

L E S S O N S xiii

71208_Kaner_FMI 11/28/01 11:30 AM Page xiii

Lesson 187 To create a schedule for a set of tasks, estimate the amount of time
needed for each task 172

Lesson 188 The person who will do the work should tell you how long a task will take 173
Lesson 189 There is no right ratio of testers to other developers 174
Lesson 190 Trade tasks or transfer people from tasks that they are failing at 174
Lesson 191 Rotate testers across features 175
Lesson 192 Try testing in pairs 175
Lesson 193 Assign a bug hunter to the project 176
Lesson 194 Charter testing sessions, especially exploratory testing sessions 176
Lesson 195 Test in sessions 177
Lesson 196 Use activity logs to reveal the interruptions that plague testers’ work 177
Lesson 197 Regular status reports are powerful tools 178
Lesson 198 There’s nothing more dangerous than a vice president with statistics 179
Lesson 199 Be cautious about measuring the project’s progress in terms of bug counts 180
Lesson 200 The more independent coverage measures you use, the more you know 181
Lesson 201 Use a balanced scorecard to report status on multiple dimensions 182
Lesson 202 Here’s a suggested structure for a weekly status report 183
Lesson 203 A project dashboard is another useful way for showing status 184
Lesson 204 Milestone reports are useful when milestones are well defined 185
Lesson 205 Don’t sign-off to approve the release of a product 186
Lesson 206 Do sign-off that you have tested a product to your satisfaction 186
Lesson 207 If you write a release report, describe your testing work and results,

not your opinion of the product 187
Lesson 208 List unfixed bugs in the final release report 187
Lesson 209 A useful release report lists the 10 worst things critics might say 187

Chapter 9 Managing the Testing Group

Lesson 210 Mediocrity is a self-fulfilling prophecy 189
Lesson 211 Treat your staff as executives 190
Lesson 212 Read your staff’s bug reports 191
Lesson 213 Evaluate your staff as executives 191
Lesson 214 If you really want to know what’s going on, test with your staff 193
Lesson 215 Don’t expect people to handle multiple projects efficiently 193
Lesson 216 Build your testing staff’s domain expertise 194
Lesson 217 Build your testing staff’s expertise in the relevant technology 194
Lesson 218 Work actively on skills improvement 195
Lesson 219 Review technical support logs 195
Lesson 220 Help new testers succeed 195
Lesson 221 Have new testers check the documentation against the software 196
Lesson 222 Familiarize new testers with the product through positive testing 197
Lesson 223 Have novice testers edit old bug reports before writing new ones 197
Lesson 224 Have new testers retest old bugs before testing for new bugs 197
Lesson 225 Don’t put novice testers on nearly finished projects 198
Lesson 226 The morale of your staff is an important asset 199
Lesson 227 Don’t let yourself be abused 200
Lesson 228 Don’t abuse your staff with overtime 200
Lesson 229 Don’t let your staff be abused 202

L E S S O N Sxiv

71208_Kaner_FMI 11/28/01 11:30 AM Page xiv

Lesson 230 Create training opportunities 202
Lesson 231 Your hiring decisions are your most important decisions 203
Lesson 232 Hire contractors to give you breathing room during recruiting 203
Lesson 233 Rarely accept rejects from other groups into testing 203
Lesson 234 Plan in terms of the tasks you need to do in your group and the skills

needed to do them 204
Lesson 235 Staff the testing team with diverse backgrounds 204
Lesson 236 Hire opportunity candidates 205
Lesson 237 Hire by consensus 206
Lesson 238 Hire people who love their work 206
Lesson 239 Hire integrity 206
Lesson 240 During the interview, have the tester demonstrate the skills you’re

hiring him for 206
Lesson 241 During the interview, have the tester demonstrate skills he’ll actually

use on the job over informal aptitude tests 207
Lesson 242 When recruiting, ask for work samples 207
Lesson 243 Hire quickly after you make up your mind 208
Lesson 244 Put your hiring promises in writing and keep them 208

Chapter 10 Your Career in Software Testing

Lesson 245 Choose a career track and pursue it 209
Lesson 246 Testers’ incomes can be higher than programmers’ incomes 211
Lesson 247 Feel free to change your track and pursue something else 212
Lesson 248 Whatever path you take, pursue it actively 212
Lesson 249 Extend your career beyond software testing 213
Lesson 250 Extend your career beyond your company 213
Lesson 251 Conferences are for conferring 214
Lesson 252 Lots of other companies are as screwed up as yours 214
Lesson 253 If you don’t like your company, look for a different job 215
Lesson 254 Be prepared in case you have to bet your job (and lose) 215
Lesson 255 Build and maintain a list of companies where you’d like to work 216
Lesson 256 Build a portfolio 216
Lesson 257 Use your resume as a sales tool 217
Lesson 258 Get an inside referral 218
Lesson 259 Research salary data 218
Lesson 260 If you’re answering an advertisement, tailor your answer to the

advertisement 218
Lesson 261 Take advantage of opportunities to interview 218
Lesson 262 Learn about companies when you apply for jobs with them 219
Lesson 263 Ask questions during job interviews 220
Lesson 264 Negotiate your position 221
Lesson 265 Be cautious about Human Resources 223
Lesson 266 Learn Perl 223
Lesson 267 Learn Java or C++ 223
Lesson 268 Download demo copies of testing tools and try them out 224
Lesson 269 Improve your writing skills 224
Lesson 270 Improve your public speaking skills 224

L E S S O N S xv

71208_Kaner_FMI 11/28/01 11:30 AM Page xv

Lesson 271 Think about getting certified 224
Lesson 272 If you can get a black belt in only two weeks, avoid fights 226
Lesson 273 A warning about the efforts to license software engineers 226

Chapter 11 Planning the Testing Strategy

Lesson 274 Three basic questions to ask about test strategy are “why bother?”,
“who cares?”, and “how much?” 231

Lesson 275 There are many possible test strategies 232
Lesson 276 The real test plan is the set of ideas that guides your test process 233
Lesson 277 Design your test plan to fit your context 233
Lesson 278 Use the test plan to express choices about strategy, logistics, and work

products 234
Lesson 279 Don’t let logistics and work products blind you to strategy 235
Lesson 280 How to lie with test cases 235
Lesson 281 Your test strategy is more than your tests 236
Lesson 282 Your test strategy explains your testing 236
Lesson 283 Apply diverse half-measures 237
Lesson 284 Cultivate the raw materials of powerful test strategies 238
Lesson 285 Your first strategy on a project is always wrong 238
Lesson 286 At every phase of the project, ask yourself “what can I test now and how

can I test it?” 239
Lesson 287 Test to the maturity of the product 239
Lesson 288 Use test levels to simplify discussions of test complexity 241
Lesson 289 Test the gray box 242
Lesson 290 Beware of ancestor worship when reusing test materials 242
Lesson 291 Two testers testing the same thing are probably not duplicating efforts 243
Lesson 292 Design your test strategy in response to project factors as well as

product risks 243
Lesson 293 Treat test cycles as the heartbeat of the test process 244

L E S S O N Sxvi

71208_Kaner_FMI 11/28/01 11:30 AM Page xvi

