
Mastering Embedded
Linux Programming
Third Edition

Create fast and reliable embedded solutions with
Linux 5.4 and the Yocto Project 3.1 (Dunfell)

Frank Vasquez

Chris Simmonds

BIRMINGHAM—MUMBAI

Mastering Embedded Linux Programming
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Sankalp Khattri
Senior Editor: Rahul Dsouza
Content Development Editor: Sayali Pingale
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Soni
Production Designer: Nilesh Mohite

First published: December 2015
Second edition: June 2017
Third edition: March 2021
Production reference: 0140421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-038-4
www.packt.com

http://www.packt.com

To the open source software community (especially the Yocto Project)
for welcoming me in wholeheartedly. And to my wife Deborah for putting

up with the late-night hardware hacking. The world runs on Linux.

– Frank Vasquez

Contributors

About the authors
Frank Vasquez is an independent software consultant specializing in consumer
electronics. He has over a decade of experience designing and building embedded Linux
systems. During that time, he has shipped numerous devices including a rackmount DSP
audio server, a diver-held sonar camcorder, and a consumer IoT hotspot. Before his career
as an embedded Linux engineer, Frank was a database kernel developer at IBM, where he
worked on DB2. He lives in Silicon Valley.

Chris Simmonds is a software consultant and trainer living in southern England. He
has almost two decades of experience in designing and building open source embedded
systems. He is the founder and chief consultant at 2net Ltd, which provides professional
training and mentoring services in embedded Linux, Linux device drivers, and Android
platform development. He has trained engineers at many of the biggest companies in the
embedded world, including ARM, Qualcomm, Intel, Ericsson, and General Dynamics.
He is a frequent presenter at open source and embedded conferences, including the
Embedded Linux Conference and Embedded World.

About the reviewers
Ned Konz is an autodidact who believes in Sturgeon's law and tries to work on the other
10% of everything. His work experience over the last 45 years includes software and
electronics design for industrial machines, and consumer and medical devices, as well as
doing user interface research with Alan Kay's team at HP Labs. He has embedded Linux in
devices including high-end SONAR systems, inspection cameras, and the Glowforge laser
cutter. As a senior embedded systems programmer at Product Creation Studio in Seattle,
he designs software and electronics for a variety of client products. In his spare time, he
builds electronics gadgets and plays bass in a rock band. He has also done two solo bicycle
tours of over 4,500 miles each.

I'd like to thank my wife Nancy for her support, and Frank Vasquez for
recommending me as a technical reviewer.

Khem Raj holds a bachelor's degree (Hons) in electronics and communications
engineering. In his career spanning 20 years in software systems, he has worked with
organizations ranging from start-ups to Fortune 500 companies. During this time,
he has worked on developing operating systems, compilers, computer programming
languages, scalable build systems, and system software development and optimization.
He is passionate about open source and is a prolific open source contributor, maintaining
popular open source projects such as the Yocto Project. He is a frequent speaker at open
source conferences. He is an avid reader and a lifelong learner.

Table of Contents
Preface

Section 1: Elements of Embedded Linux

1
Starting Out

Choosing Linux 4
When not to choose Linux 5
Meeting the players 6
Moving through the project
life cycle 7
The four elements of embedded Linux 8

Navigating open source 8
Licenses 9

Selecting hardware for
embedded Linux 10
Obtaining the hardware for
this book 12
The Raspberry Pi 4 12
The BeagleBone Black 13
QEMU 14

Provisioning your development
environment 15
Summary 16

2
Learning about Toolchains

Technical requirements 18
Introducing toolchains 18
Types of toolchains 20
CPU architectures 21
Choosing the C library 23

Finding a toolchain 25

Building a toolchain using
crosstool-NG 26
Installing crosstool-NG 26
Building a toolchain for BeagleBone
Black 27
Building a toolchain for QEMU 28

ii Table of Contents

Anatomy of a toolchain 29
Finding out about your cross compiler 30
The sysroot, library, and header files 32
Other tools in the toolchain 33
Looking at the components of the
C library 34

Linking with libraries – static
and dynamic linking 35
Static libraries 36

Shared libraries 37

The art of cross-compiling 39
Simple makefiles 40
Autotools 40
Package configuration 45
Problems with cross-compiling 46
CMake 47

Summary 49
Further reading 50

3
All about Bootloaders

Technical requirements 52
What does a bootloader do? 52
The boot sequence 53
Phase 1 – ROM code 54
Phase 2 – secondary program loader 55
Phase 3 – TPL 56

Moving from the bootloader to
a kernel 57
Introducing device trees 58
Device tree basics 58
The reg property 59

Labels and interrupts 60
Device tree include files 61
Compiling a device tree 63

U-Boot 64
Building U-Boot 64
Installing U-Boot 66
Using U-Boot 69
Booting Linux 74
Porting U-Boot to a new board 75
Building and testing 81
Falcon mode 82

Summary 83

4
Configuring and Building the Kernel

Technical requirements 86
What does the kernel do? 86
Choosing a kernel 88
Kernel development cycle 88
Stable and long-term support releases 89

Building the kernel 91
Getting the source 91
Understanding kernel
configuration – Kconfig 93
Using LOCALVERSION to identify
your kernel 98
When to use kernel modules 99

Table of Contents iii

Compiling – Kbuild 99
Finding out which kernel target
to build 100
Build artifacts 101
Compiling device trees 103
Compiling modules 103
Cleaning kernel sources 104
Building a 64-bit kernel for the
Raspberry Pi 4 104
Building a kernel for the
BeagleBone Black 107
Building a kernel for QEMU 107

Booting the kernel 108

Booting the Raspberry Pi 4 108
Booting the BeagleBone Black 109
Booting QEMU 110
Kernel panic 110
Early user space 110
Kernel messages 111
The kernel command line 112

Porting Linux to a new board 113
A new device tree 114
Setting the board's compatible
property 115

Summary 118
Additional reading 119

5
Building a
Root Filesystem

Technical requirements 122
What should be in the root
filesystem? 123
The directory layout 124
The staging directory 125
POSIX file access permissions 126
File ownership permissions in the
staging directory 127
Programs for the root filesystem 128
Libraries for the root filesystem 132
Device nodes 134
The proc and sysfs filesystems 136
Kernel modules 137

Transferring the root
filesystem to the target 138
Creating a boot initramfs 139
Standalone initramfs 139
Booting the initramfs 140

Booting with QEMU 140
Booting the BeagleBone Black 140
Building an initramfs into the
kernel image 141
Building an initramfs using a
device table 142
The old initrd format 143

The init program 144
Starting a daemon process 145

Configuring user accounts 145
Adding user accounts to the root
filesystem 147

A better way of managing
device nodes 148
An example using devtmpfs 148
An example using mdev 149
Are static device nodes so bad
after all? 150

iv Table of Contents

Configuring the network 150
Network components for glibc 151

Creating filesystem images
with device tables 152
Booting the BeagleBone Black 153

Mounting the root filesystem
using NFS 154

Testing with QEMU 155
Testing with the BeagleBone Black 156
Problems with file permissions 157

Using TFTP to load the kernel 157
Summary 158
Further reading 159

6
Selecting a Build System

Technical requirements 162
Comparing build systems 162
Distributing binaries 164
Introducing Buildroot 165
Background 165
Stable releases and long-term support 165
Installing 165
Configuring 166
Running 167
Targeting real hardware 169
Creating a custom BSP 169
Adding your own code 176
License compliance 179

Introducing the Yocto Project 179
Background 180
Stable releases and supports 181
Installing the Yocto Project 182
Configuring 182
Building 183
Running the QEMU target 184
Layers 185
Customizing images via local.conf 191
Writing an image recipe 192
Creating an SDK 193
The license audit 195

Summary 196
Further reading 196

7
Developing with Yocto

Technical requirements 198
Building on top of an
existing BSP 199
Building an existing BSP 199
Controlling Wi-Fi 206
Controlling Bluetooth 209
Adding a custom layer 213

Capturing changes
with devtool 216
Development workflows 216
Creating a new recipe 218
Modifying the source built by a recipe 220
Upgrading a recipe to a newer version 222

Table of Contents v

Building your own distro 225
When and when not to 225
Creating a new distro layer 225
Configuring your distro 226
Adding more recipes to your distro 227

Runtime package management 227

Provisioning a remote
package server 229
Summary 231
Further reading 232

8
Yocto Under the Hood

Technical requirements 234
Decomposing Yocto's
architecture and workflow 234
Metadata 236
Build tasks 238
Image generation 239

Separating metadata
into layers 240
Troubleshooting build failures 243
Isolating errors 243
Dumping the environment 244
Reading the task log 245

Adding more logging 245
Running commands from devshell 246
Graphing dependencies 246

Understanding BitBake syntax
and semantics 248
Tasks 248
Dependencies 249
Variables 250
Functions 254
RDEPENDS revisited 257

Summary 258
Further reading 258

Section 2: System Architecture and Design
Decisions

9
Creating a Storage Strategy

Technical requirements 262
Storage options 263
NOR flash 263
NAND flash 264

Accessing flash memory from
the bootloader 268
U-Boot and NOR flash 268
U-Boot and NAND flash 269
U-Boot and MMC, SD, and eMMC 269

vi Table of Contents

Accessing flash memory
from Linux 269
Memory technology devices 270
The MMC block driver 276

Filesystems for flash memory 277
Flash translation layers 277

Filesystems for NOR and
NAND flash memory 278
JFFS2 278
YAFFS2 281
UBI and UBIFS 283

Filesystems for managed flash 288
Flashbench 288

Discard and TRIM 289
Ext4 291
F2FS 292
FAT16/32 292

Read-only compressed
filesystems 293
SquashFS 293

Temporary filesystems 294
Making the root filesystem
read-only 295
Filesystem choices 296
Summary 297
Further reading 297

10
Updating Software in the Field

Technical requirements 300
From where do updates
originate? 300
What to update 301
Bootloader 302
Kernel 302
Root filesystem 302
System applications 303
Device-specific data 303
Components that need to be updated 303

The basics of software updates 303
Making updates robust 304
Making updates fail-safe 305
Making updates secure 307

Types of update mechanism 308
Symmetric image update 308

Asymmetric image update 309
Atomic file updates 310

OTA updates 312
Using Mender for local updates 313
Building the Mender client 313

Installing an update 316
Using Mender for OTA updates 319
Using balena for local updates 327
Creating an account 327
Creating an application 328
Adding a device 329
Installing the CLI 332
Pushing a project 334

Summary 337

Table of Contents vii

11
Interfacing with Device Drivers

Technical requirements 340
The role of device drivers 341
Character devices 342
Block devices 344
Network devices 346
Finding out about drivers at
runtime 347
Getting information from sysfs 350

Finding the right device driver 353
Device drivers in user space 354
GPIO 354
LEDs 358
I2C 359

SPI 362

Writing a kernel device driver 362
Designing a character driver interface 363
The anatomy of a device driver 364
Compiling kernel modules 368
Loading kernel modules 369

Discovering the hardware
configuration 370
Device trees 370
The platform data 371
Linking hardware with device drivers 372

Summary 374
Further reading 375

12
Prototyping with Breakout Boards

Technical requirements 378
Mapping schematics to the
device tree's source 379
Reading schematics and data sheets 380
Installing Debian on the BeagleBone
Black 384
Enabling spidev 385
Customizing the device tree 392

Prototyping with breakout
boards 401

Closing the SPI jumper 403
Attaching the GNSS antenna 404
Attaching the SPI header 404
Connecting the SPI jumper wires 406

Probing SPI signals with a
logic analyzer 410
Receiving NMEA messages
over SPI 419
Summary 423
Further reading 423

viii Table of Contents

13
Starting Up – The init Program

Technical requirements 426
After the kernel has booted 426
Introducing the init programs 428
BusyBox init 428
Buildroot init scripts 430

System V init 430
inittab 432
The init.d scripts 435
Adding a new daemon 436
Starting and stopping services 437

systemd 438
Building systemd with the Yocto
Project and Buildroot 438
Introducing targets, services,
and units 439
How systemd boots the system 442
Adding your own service 442
Adding a watchdog 444
Implications for embedded Linux 445

Summary 446
Further reading 446

14
Starting with BusyBox runit

Technical requirements 448
Getting BusyBox runit 449
Creating service directories
and files 455
Service directory layout 455
Service configuration 457

Service supervision 465
Controlling services 467

Depending on other services 469
Start dependencies 470

Custom start dependencies 471
Putting it all together 472

Dedicated service logging 472
How does it work? 473
Adding dedicated logging to a service 473
Log rotation 475

Signaling a service 477
Summary 478
Further reading 479

15
Managing Power

Technical requirements 482
Measuring power usage 483

Scaling the clock frequency 487
The CPUFreq driver 488
Using CPUFreq 489

Table of Contents ix

Selecting the best idle state 492
The CPUIdle driver 493
Tickless operation 496

Powering down peripherals 497
Putting the system to sleep 499

Power states 499
Wakeup events 501
Timed wakeups from the
real-time clock 502

Summary 504
Further reading 504

Section 3: Writing Embedded Applications

16
Packaging Python

Technical requirements 508
Getting Docker 509

Retracing the origins of
Python packaging 509
distutils 510
setuptools 510
setup.py 511

Installing Python packages
with pip 514
requirements.txt 516

Managing Python virtual
environments with venv 520

Installing precompiled binaries
with conda 523
Environment management 524
Package management 526

Deploying Python applications
with Docker 529
The anatomy of a Dockerfile 529
Building a Docker image 532
Running a Docker image 533
Fetching a Docker image 534
Publishing a Docker image 535
Cleaning up 536

Summary 537
Further reading 538

17
Learning about Processes and Threads

Technical requirements 540
Process or thread? 540
Processes 542
Creating a new process 543

Terminating a process 544
Running a different program 545
Daemons 548
Inter-process communication 549

x Table of Contents

Threads 555
Creating a new thread 555
Terminating a thread 556
Compiling a program with threads 557
Inter-thread communication 557
Mutual exclusion 558
Changing conditions 558
Partitioning the problem 560

ZeroMQ 562
Getting pyzmq 562

Messaging between processes 563
Messaging within processes 565

Scheduling 567
Fairness versus determinism 567
Time-shared policies 568
Real-time policies 570
Choosing a policy 571
Choosing a real-time priority 571

Summary 572
Further reading 572

18
Managing Memory

Technical requirements 574
Virtual memory basics 574
Kernel space memory layout 576
How much memory does the
kernel use? 577

User space memory layout 579
The process memory map 581
Swapping 583
Swapping to compressed
memory (zram) 583

Mapping memory with mmap 584
Using mmap to allocate private
memory 585
Using mmap to share memory 585

Using mmap to access device memory 586

How much memory does my
application use? 586
Per-process memory usage 587
Using top and ps 588
Using smem 589
Other tools to consider 591

Identifying memory leaks 591
mtrace 592
Valgrind 593

Running out of memory 595
Summary 596
Further reading 597

Table of Contents xi

Section 4: Debugging and Optimizing
Performance

19
Debugging with GDB

Technical requirements 602
The GNU debugger 602
Preparing to debug 603
Debugging applications 604
Remote debugging using gdbserver 604
Setting up the Yocto Project for
remote debugging 605
Setting up Buildroot for remote
debugging 606
Starting to debug 607
Native debugging 617

Just-in-time debugging 619
Debugging forks and threads 619
Core files 620
Using GDB to look at core files 621

GDB user interfaces 622
Terminal User Interface 623
Data Display Debugger 623
Visual Studio Code 625

Debugging kernel code 633
Debugging kernel code with kgdb 633
A sample debug session 634
Debugging early code 636
Debugging modules 637
Debugging kernel code with kdb 638
Looking at an Oops 639
Preserving the Oops 643

Summary 644
Further reading 645

20
Profiling and Tracing

Technical requirements 648
The observer effect 649
Symbol tables and compile flags 649

Beginning to profile 650
Profiling with top 651
The poor man's profiler 652
Introducing perf 653
Configuring the kernel for perf 654
Building perf with the Yocto Project 654

Building perf with Buildroot 654
Profiling with perf 655
Call graphs 657
perf annotate 658

Tracing events 660
Introducing Ftrace 660
Preparing to use Ftrace 661
Using Ftrace 661
Dynamic Ftrace and trace filters 664
Trace events 665

xii Table of Contents

Using LTTng 667
LTTng and the Yocto Project 667
LTTng and Buildroot 667
Using LTTng for kernel tracing 668

Using BPF 670
Configuring the kernel for BPF 671
Building a BCC toolkit with Buildroot 674

Using BPF tracing tools 675

Using Valgrind 678
Callgrind 678
Helgrind 679

Using strace 680
Summary 683
Further reading 683

21
Real-Time Programming

Technical requirements 686
What is real time? 687
Identifying sources of
non-determinism 689
Understanding scheduling
latency 690
Kernel preemption 691
The real-time Linux kernel
(PREEMPT_RT) 692
Threaded interrupt handlers 692

Preemptible kernel locks 695
Getting the PREEMPT_RT patches 696

The Yocto Project and PREEMPT_RT 697

High-resolution timers 697
Avoiding page faults 698
Interrupt shielding 699
Measuring scheduling latencies 700
cyclictest 700
Using Ftrace 704
Combining cyclictest and Ftrace 706

Summary 707
Further reading 708
Why subscribe? 709

Other Books You May Enjoy
Index

