
Node.js Design Patterns
Third Edition

Design and implement production-grade Node.js
applications using proven patterns and techniques

Mario Casciaro

Luciano Mammino

BIRMINGHAM - MUMBAI

Node.js Design Patterns
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Tom Jacob
Content Development Editors: Joanne Lovell, Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Saby D'silva
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Sandip Tadge

First published: December 2014

Second Edition: July 2016

Third Edition: July 2020

Production reference: 1240720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-411-0

www.packt.com

http://www.packt.com

[i]

Table of Contents
Preface xi
Chapter 1: The Node.js Platform 1

The Node.js philosophy 2
Small core 2
Small modules 2
Small surface area 3
Simplicity and pragmatism 4

How Node.js works 5
I/O is slow 5
Blocking I/O 5
Non-blocking I/O 6
Event demultiplexing 7
The reactor pattern 9
Libuv, the I/O engine of Node.js 11
The recipe for Node.js 12

JavaScript in Node.js 13
Run the latest JavaScript with confidence 13
The module system 14
Full access to operating system services 14
Running native code 15

Summary 16
Chapter 2: The Module System 17

The need for modules 18
Module systems in JavaScript and Node.js 19
The module system and its patterns 20

The revealing module pattern 20

Table of Contents

[ii]

CommonJS modules 22
A homemade module loader 22
Defining a module 24
module.exports versus exports 25
The require function is synchronous 26
The resolving algorithm 26
The module cache 28
Circular dependencies 29

Module definition patterns 33
Named exports 33
Exporting a function 34
Exporting a class 35
Exporting an instance 36
Modifying other modules or the global scope 37

ESM: ECMAScript modules 38
Using ESM in Node.js 39
Named exports and imports 39
Default exports and imports 42
Mixed exports 43
Module identifiers 45
Async imports 45
Module loading in depth 48

Loading phases 48
Read-only live bindings 49
Circular dependency resolution 50

Modifying other modules 56
ESM and CommonJS differences and interoperability 60

ESM runs in strict mode 60
Missing references in ESM 60
Interoperability 61

Summary 62
Chapter 3: Callbacks and Events 63

The Callback pattern 64
The continuation-passing style 64

Synchronous CPS 65
Asynchronous CPS 65
Non-CPS callbacks 67

Synchronous or asynchronous? 67
An unpredictable function 68
Unleashing Zalgo 68
Using synchronous APIs 70
Guaranteeing asynchronicity with deferred execution 72

Table of Contents

[iii]

Node.js callback conventions 73
The callback comes last 73
Any error always comes first 74
Propagating errors 74
Uncaught exceptions 75

The Observer pattern 77
The EventEmitter 78
Creating and using the EventEmitter 79
Propagating errors 80
Making any object observable 80
EventEmitter and memory leaks 82
Synchronous and asynchronous events 83
EventEmitter versus callbacks 85
Combining callbacks and events 86

Summary 88
Exercises 88

Chapter 4: Asynchronous Control Flow Patterns with Callbacks 89
The difficulties of asynchronous programming 90

Creating a simple web spider 90
Callback hell 93

Callback best practices and control flow patterns 94
Callback discipline 95
Applying the callback discipline 95
Sequential execution 98

Executing a known set of tasks in sequence 99
Sequential iteration 100

Parallel execution 104
Web spider version 3 106
The pattern 108
Fixing race conditions with concurrent tasks 108

Limited parallel execution 110
Limiting concurrency 112
Globally limiting concurrency 113

The async library 119
Summary 120
Exercises 121

Chapter 5: Asynchronous Control Flow Patterns
with Promises and Async/Await 123

Promises 124
What is a promise? 125
Promises/A+ and thenables 127
The promise API 128

Table of Contents

[iv]

Creating a promise 130
Promisification 131
Sequential execution and iteration 133
Parallel execution 136
Limited parallel execution 137

Implementing the TaskQueue class with promises 138
Updating the web spider 139

Async/await 141
Async functions and the await expression 141
Error handling with async/await 143

A unified try...catch experience 143
The "return" versus "return await" trap 144

Sequential execution and iteration 145
Antipattern – using async/await with Array.forEach for serial execution 147

Parallel execution 147
Limited parallel execution 149

The problem with infinite recursive promise resolution chains 152
Summary 156
Exercises 157

Chapter 6: Coding with Streams 159
Discovering the importance of streams 160

Buffering versus streaming 160
Spatial efficiency 161

Gzipping using a buffered API 162
Gzipping using streams 163

Time efficiency 163
Composability 167

Adding client-side encryption 167
Adding server-side decryption 169

Getting started with streams 170
Anatomy of streams 170
Readable streams 171

Reading from a stream 171
Implementing Readable streams 174

Writable streams 179
Writing to a stream 179
Backpressure 181
Implementing Writable streams 182

Duplex streams 185
Transform streams 185

Implementing Transform streams 186
Filtering and aggregating data with Transform streams 189

PassThrough streams 193
Observability 193

Table of Contents

[v]

Late piping 194
Lazy streams 197
Connecting streams using pipes 198

Pipes and error handling 200
Better error handling with pipeline() 201

Asynchronous control flow patterns with streams 203
Sequential execution 203
Unordered parallel execution 206

Implementing an unordered parallel stream 206
Implementing a URL status monitoring application 208

Unordered limited parallel execution 210
Ordered parallel execution 212

Piping patterns 214
Combining streams 214

Implementing a combined stream 217
Forking streams 219

Implementing a multiple checksum generator 220
Merging streams 221

Merging text files 221
Multiplexing and demultiplexing 223

Building a remote logger 224
Multiplexing and demultiplexing object streams 229

Summary 230
Exercises 230

Chapter 7: Creational Design Patterns 233
Factory 234

Decoupling object creation and implementation 235
A mechanism to enforce encapsulation 236
Building a simple code profiler 238
In the wild 241

Builder 241
Implementing a URL object builder 244
In the wild 248

Revealing Constructor 249
Building an immutable buffer 250
In the wild 253

Singleton 253
Wiring modules 257

Singleton dependencies 258
Dependency Injection 261

Summary 266
Exercises 267

Table of Contents

[vi]

Chapter 8: Structural Design Patterns 269
Proxy 269

Techniques for implementing proxies 271
Object composition 272
Object augmentation 275
The built-in Proxy object 277
A comparison of the different proxying techniques 280

Creating a logging Writable stream 281
Change observer with Proxy 282
In the wild 285

Decorator 285
Techniques for implementing decorators 286

Composition 286
Object augmentation 288
Decorating with the Proxy object 289

Decorating a LevelUP database 290
Introducing LevelUP and LevelDB 290
Implementing a LevelUP plugin 291

In the wild 293
The line between proxy and decorator 294
Adapter 294

Using LevelUP through the filesystem API 295
In the wild 298

Summary 299
Exercises 300

Chapter 9: Behavioral Design Patterns 301
Strategy 302

Multi-format configuration objects 304
In the wild 308

State 308
Implementing a basic failsafe socket 310

Template 315
A configuration manager template 316
In the wild 318

Iterator 319
The iterator protocol 319
The iterable protocol 322
Iterators and iterables as a native JavaScript interface 324
Generators 326

Generators in theory 327
A simple generator function 327
Controlling a generator iterator 328
How to use generators in place of iterators 330

Table of Contents

[vii]

Async iterators 331
Async generators 334
Async iterators and Node.js streams 335
In the wild 336

Middleware 337
Middleware in Express 337
Middleware as a pattern 338
Creating a middleware framework for ZeroMQ 340

The Middleware Manager 340
Implementing the middleware to process messages 342
Using the ZeroMQ middleware framework 344

In the wild 347
Command 347

The Task pattern 349
A more complex command 349

Summary 353
Exercises 354

Chapter 10: Universal JavaScript for Web Applications 357
Sharing code with the browser 358

JavaScript modules in a cross-platform context 359
Module bundlers 360
How a module bundler works 363
Using webpack 369

Fundamentals of cross-platform development 371
Runtime code branching 372

Challenges of runtime code branching 373
Build-time code branching 374
Module swapping 377
Design patterns for cross-platform development 378

A brief introduction to React 379
Hello React 381
Alternatives to react.createElement 383
Stateful components 385

Creating a Universal JavaScript app 391
Frontend-only app 392
Server-side rendering 399
Asynchronous data retrieval 405
Universal data retrieval 411

Two-pass rendering 412
Async pages 414
Implementing async pages 416

Summary 425
Exercises 426

Table of Contents

[viii]

Chapter 11: Advanced Recipes 427
Dealing with asynchronously initialized components 428

The issue with asynchronously initialized components 428
Local initialization check 429
Delayed startup 430

Pre-initialization queues 431
In the wild 435

Asynchronous request batching and caching 435
What's asynchronous request batching? 436
Optimal asynchronous request caching 437
An API server without caching or batching 439
Batching and caching with promises 441

Batching requests in the total sales web server 442
Caching requests in the total sales web server 443
Notes about implementing caching mechanisms 445

Canceling asynchronous operations 445
A basic recipe for creating cancelable functions 446
Wrapping asynchronous invocations 447
Cancelable async functions with generators 449

Running CPU-bound tasks 453
Solving the subset sum problem 453
Interleaving with setImmediate 457

Interleaving the steps of the subset sum algorithm 457
Considerations on the interleaving approach 459

Using external processes 460
Delegating the subset sum task to an external process 461
Considerations for the multi-process approach 467

Using worker threads 468
Running the subset sum task in a worker thread 469

Running CPU-bound tasks in production 472
Summary 473
Exercises 473

Chapter 12: Scalability and Architectural Patterns 475
An introduction to application scaling 476

Scaling Node.js applications 477
The three dimensions of scalability 477

Cloning and load balancing 479
The cluster module 480

Notes on the behavior of the cluster module 481
Building a simple HTTP server 482
Scaling with the cluster module 484
Resiliency and availability with the cluster module 486
Zero-downtime restart 488

Table of Contents

[ix]

Dealing with stateful communications 490
Sharing the state across multiple instances 491
Sticky load balancing 492

Scaling with a reverse proxy 494
Load balancing with Nginx 496

Dynamic horizontal scaling 501
Using a service registry 501
Implementing a dynamic load balancer with http-proxy and Consul 503

Peer-to-peer load balancing 510
Implementing an HTTP client that can balance requests across multiple servers 511

Scaling applications using containers 513
What is a container? 513
Creating and running a container with Docker 514
What is Kubernetes? 517
Deploying and scaling an application on Kubernetes 519

Decomposing complex applications 523
Monolithic architecture 524
The microservice architecture 526

An example of a microservice architecture 526
Microservices – advantages and disadvantages 528

Integration patterns in a microservice architecture 530
The API proxy 531
API orchestration 532
Integration with a message broker 536

Summary 538
Exercises 539

Chapter 13: Messaging and Integration Patterns 541
Fundamentals of a messaging system 542

One way versus request/reply patterns 542
Message types 544

Command Messages 544
Event Messages 545
Document Messages 545

Asynchronous messaging, queues, and streams 545
Peer-to-peer or broker-based messaging 547

Publish/Subscribe pattern 549
Building a minimalist real-time chat application 550

Implementing the server side 550
Implementing the client side 551
Running and scaling the chat application 553

Using Redis as a simple message broker 554
Peer-to-peer Publish/Subscribe with ZeroMQ 557

Introducing ZeroMQ 557
Designing a peer-to-peer architecture for the chat server 558
Using the ZeroMQ PUB/SUB sockets 559

Table of Contents

[x]

Reliable message delivery with queues 562
Introducing AMQP 564
Durable subscribers with AMQP and RabbitMQ 566

Reliable messaging with streams 571
Characteristics of a streaming platform 571
Streams versus message queues 573
Implementing the chat application using Redis Streams 573

Task distribution patterns 577
The ZeroMQ Fanout/Fanin pattern 579

PUSH/PULL sockets 580
Building a distributed hashsum cracker with ZeroMQ 580

Pipelines and competing consumers in AMQP 587
Point-to-point communications and competing consumers 588
Implementing the hashsum cracker using AMQP 588

Distributing tasks with Redis Streams 592
Redis consumer groups 593
Implementing the hashsum cracker using Redis Streams 594

Request/Reply patterns 598
Correlation Identifier 598

Implementing a request/reply abstraction using correlation identifiers 599
Return address 605

Implementing the Return Address pattern in AMQP 605
Summary 611
Exercises 612

Other Books You May Enjoy 615
Index 619

