Christopher M. Bishop

Pattern Recognition and
Machine Learning

@ Springer



Christopher M. Bishop F.R.Eng.

Assistant Director
Microsoft Research Ltd

Cambridge CB3 OFB, U.K.

cmbishop @microsoft.com

http://research.microsoft.com/~cmbishop

Series Editors

Michael Jordan

Department of Computer
Science and Department
of Statistics

University of California,
Berkeley

Professor Jon Kleinberg

Department of Computer
Science

Cornell University

Ithaca, NY 14853

USA

Bernhard Scholkopf
Max Planck Institute for

Biological Cybernetics
Spemannstrasse 38
72076 Tiibingen
Germany

Berkeley, CA 94720
USA

Library of Congress Control Number: 2006922522

ISBN-10: 0-387-31073-8
ISBN-13: 978-0387-31073-2

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher
(Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection
with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in Singapore. (KYO)
987654321

springer.com



This book is dedicated to my family:

Jenna, Mark, and Hugh

Total eclipse of the sun, Antalya, Turkey, 29 March 2006.



This page intentionally left blank



Preface

Pattern recognition has its origins in engineering, whereas machine learning grew
out of computer science. However, these activities can be viewed as two facets of
the same field, and together they have undergone substantial development over the
past ten years. In particular, Bayesian methods have grown from a specialist niche to
become mainstream, while graphical models have emerged as a general framework
for describing and applying probabilistic models. Also, the practical applicability of
Bayesian methods has been greatly enhanced through the development of a range of
approximate inference algorithms such as variational Bayes and expectation propa-
gation. Similarly, new models based on kernels have had significant impact on both
algorithms and applications.

This new textbook reflects these recent developments while providing a compre-
hensive introduction to the fields of pattern recognition and machine learning. It is
aimed at advanced undergraduates or first year PhD students, as well as researchers
and practitioners, and assumes no previous knowledge of pattern recognition or ma-
chine learning concepts. Knowledge of multivariate calculus and basic linear algebra
is required, and some familiarity with probabilities would be helpful though not es-
sential as the book includes a self-contained introduction to basic probability theory.

Because this book has broad scope, it is impossible to provide a complete list of
references, and in particular no attempt has been made to provide accurate historical
attribution of ideas. Instead, the aim has been to give references that offer greater
detail than is possible here and that hopefully provide entry points into what, in some
cases, is a very extensive literature. For this reason, the references are often to more
recent textbooks and review articles rather than to original sources.

The book is supported by a great deal of additional material, including lecture
slides as well as the complete set of figures used in the book, and the reader is
encouraged to visit the book web site for the latest information:

http://research.microsoft.com/~cmbishop/PRML
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PREFACE

Exercises

The exercises that appear at the end of every chapter form an important com-
ponent of the book. Each exercise has been carefully chosen to reinforce concepts
explained in the text or to develop and generalize them in significant ways, and each
is graded according to difficulty ranging from (%), which denotes a simple exercise
taking a few minutes to complete, through to (x * %), which denotes a significantly
more complex exercise.

It has been difficult to know to what extent these solutions should be made
widely available. Those engaged in self study will find worked solutions very ben-
eficial, whereas many course tutors request that solutions be available only via the
publisher so that the exercises may be used in class. In order to try to meet these
conflicting requirements, those exercises that help amplify key points in the text, or
that fill in important details, have solutions that are available as a PDF file from the
book web site. Such exercises are denoted by m Solutions for the remaining
exercises are available to course tutors by contacting the publisher (contact details
are given on the book web site). Readers are strongly encouraged to work through
the exercises unaided, and to turn to the solutions only as required.

Although this book focuses on concepts and principles, in a taught course the
students should ideally have the opportunity to experiment with some of the key
algorithms using appropriate data sets. A companion volume (Bishop and Nabney,
2008) will deal with practical aspects of pattern recognition and machine learning,
and will be accompanied by Matlab software implementing most of the algorithms
discussed in this book.
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Mathematical notation

I have tried to keep the mathematical content of the book to the minimum neces-
sary to achieve a proper understanding of the field. However, this minimum level is
nonzero, and it should be emphasized that a good grasp of calculus, linear algebra,
and probability theory is essential for a clear understanding of modern pattern recog-
nition and machine learning techniques. Nevertheless, the emphasis in this book is
on conveying the underlying concepts rather than on mathematical rigour.

I have tried to use a consistent notation throughout the book, although at times
this means departing from some of the conventions used in the corresponding re-
search literature. Vectors are denoted by lower case bold Roman letters such as
x, and all vectors are assumed to be column vectors. A superscript T denotes the
transpose of a matrix or vector, so that x* will be a row vector. Uppercase bold

roman letters, such as M, denote matrices. The notation (ws, ..., wys) denotes a

row vector with M elements, while the corresponding column vector is written as
_ T

w = (wy,...,wp)".

The notation [a, b] is used to denote the closed interval from a to b, that is the
interval including the values a and b themselves, while (a, b) denotes the correspond-
ing open interval, that is the interval excluding a and b. Similarly, [a, b) denotes an
interval that includes a but excludes b. For the most part, however, there will be
little need to dwell on such refinements as whether the end points of an interval are
included or not.

The M x M identity matrix (also known as the unit matrix) is denoted I/,
which will be abbreviated to I where there is no ambiguity about it dimensionality.
It has elements I;; that equal 1 if ¢ = j and 0 if 7 # j.

A functional is denoted f[y] where y(x) is some function. The concept of a
functional is discussed in Appendix D.

The notation g(z) = O(f(x)) denotes that | f(x)/g(x)| is bounded as z — oo.
For instance if g(x) = 3z% + 2, then g(z) = O(2?).

The expectation of a function f(x,y) with respect to a random variable x is de-
noted by E,[f(x,y)]. In situations where there is no ambiguity as to which variable
is being averaged over, this will be simplified by omitting the suffix, for instance

xi
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MATHEMATICAL NOTATION

E[z]. If the distribution of z is conditioned on another variable z, then the corre-
sponding conditional expectation will be written E,[f(x)|z]. Similarly, the variance
is denoted var[f(x)], and for vector variables the covariance is written cov|[x, y]. We
shall also use cov[x] as a shorthand notation for cov[x, x]. The concepts of expecta-
tions and covariances are introduced in Section 1.2.2.

If we have N values Xy, ..., xy of a D-dimensional vector x = (1, .. ., xD)T,
we can combine the observations into a data matrix X in which the n*® row of X
corresponds to the row vector x-. Thus the n, 4 element of X corresponds to the
i*® element of the n'® observation x,,. For the case of one-dimensional variables we
shall denote such a matrix by X, which is a column vector whose n'" element is z,.
Note that X (which has dimensionality /V) uses a different typeface to distinguish it
from x (which has dimensionality D).
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