Practical Hardware Pentesting

A guide to attacking embedded systems and protecting them against the most common hardware attacks

Jean-Georges Valle

Practical Hardware Pentesting

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza Publishing Product Manager: Rahul Nair Senior Editor: Arun Nadar Content Development Editor: Romy Dias Technical Editor: Nithik Cheruvakodan Copy Editor: Safis Editing Project Coordinator: Neil D'mello Proofreader: Safis Editing Indexer: Manju Arasan Production Designer: Nilesh Mohite

First published: March 2021 Production reference: 1040321

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78961-913-3 www.packt.com To my father. I wouldn't be who I am without you.

Contributors

About the author

Jean-Georges Valle is a hardware penetration tester based in Belgium. His background was in software security, with hardware being a hobby, and he then started to look into the security aspects of hardware. He has spent the last decade testing various systems, from industrial logic controllers to city-scale IoT, and from media distribution to power metering. He has learned to attack embedded systems and to leverage them against cloud-scale infrastructure. He is the lead hardware technical expert in an offensive security team of a big four company.

Jean-Georges holds a master's degree in information security and focuses on security at the point of intersection with hardware and software, hardware and software interaction, exploit development in embedded systems, and open source hardware.

I wish to thank my parents for supporting me and loving me unconditionally, Vito and Jon for giving me an opportunity when I needed it, and Ieva for accepting that this book was competing with her for my time and attention.

About the reviewers

Ryan Slaugh has been a maker and breaker of things for over 20 years. Ryan got his start in electrical systems, and augmented his learning to include the analog, digital, embedded, software, and cybersecurity fields. He continues to practice and add to his skill sets in his home lab, and this allows him to do what he loves the most: solve problems with technology. When not working with technology, Ryan enjoys traveling around the globe and exploring the less inhabited areas of the Pacific Northwest. His greatest joy is being with his family on their small hobby farm in Washington State, USA.

Neeraj Thakur is a manager in the risk advisory practice of Deloitte and comes with more than 9 years' experience in the area of information and cybersecurity. He holds a master's degree in cybersecurity from the Indian Institute of Information Technology, Allahabad, and has extensive experience in penetration and security testing of various embedded devices and IoT-enabled products. He is a certified ISA/IEC 62443 cybersecurity fundamentals specialist and has worked extensively in the areas of industrial automation and control system security. He has delivered multiple sessions on IoT and ICS security, as well as in the security community, including Nullcon and CySeck. Neeraj is passionate about reverse engineering and security innovations using Python.

Table of Contents

Preface

Section 1: Getting to Know the Hardware

1

Setting Up Your Pentesting Lab and Ensuring Lab Safety

Prerequisites – the basics you will need	4	Small tools and equipment Renting versus buying	21 23
Languages Hardware-related skills System configuration Setting up a general lab	5 5 5 7	The component pantry The pantry itself The stock	23 23 24
Safety	8	Sample labs	25
Approach to buying test equipment Home lab versus company lab	9 9	Beginner Amateur Pro	25 26 27
Approaching instrument selection What to buy, what it does, and when to buy it	10 11	Summary Questions	27 28

2

Understanding Your Target

The CPU block	30	The storage block	34
CPU roles	30	RAM	34
Common embedded systems		Program storage	34
architectures	31	Storing data	35

ii Table of Contents

The power block The power block from a pentesting	35	Analog sensors Digital sensors	41 42
point of view	35	The actuator blocks	42
The networking blocks	36	The interface blocks	43
Common networking protocols in	20	Summary	43
embedded systems	36	Questions	44
The sensor blocks	41	Further reading	44

3

Identifying the Components of Your Target

Technical requirements Harvesting information –	46
reading the manual	47
Taking a system analysis approach	47
For our Furby manual	47
Harvesting information — researching on the internet	49
For the Furby	49
Starting the system diagram For our Furby	52 53

5	Continuing system exploration – identifying and putting	
7	components in the diagram	54
7	Opening the Furby	54
7	Manipulating the system	54
	Dismantling the Furby	55
	Identifying chips	55
9	Chips in the Furby	56
9	Identifying unmarked/mysterious chips	59
2	Furby — the mystery meat	61
<u>2</u> 3	The borders of functional blocks	68
	Summary	68
	Questions	69

4

Approaching and Planning the Test

The STRIDE methodology Finding the crown jewels in the	72	Protection of secrets or security elements	79
assessed system Security properties – what do	74	Reaching the crown jewels – how do we create impacts?	80
we expect? Communication Maintenance	77 78 78	STRIDE through the components to compromise properties For the example system – the Furby	80 82
System integrity and self-testing	79	Planning the test	85

Balancing your scenarios

85	Questions	91
91	Further reading	91

Summary

51

Section 2: Attacking the Hardware

5

Our Main Attack Platform

Technical requirements Introduction to the bluepill	96	Flashing the chip Putting it into practice for the bluepill	104 104
board	97	Introduction to C	106
A board to do what?	97	Operators	107
What is it?	97	Types	108
Why C and not Arduino?	98	The dreaded pointer	109
The documentation	99	Preprocessor directives	110
Memory-projected registers	100	Functions	111
The toolchain	100	Summary	112
The compilation process	101	Questions	112
Driving the compilation	102	Further reading	112

6

Sniffing and Attacking the Most Common Protocols

Technical requirements	114	Understanding UART	134
Hardware	114	Mode of operation	135
Understanding I2C	115	Sniffing UART Injecting UART	137 137
Mode of operation Sniffing I2C	115 123	UART – man in the middle	138
Injecting I2C	128	Understanding D1W	139
I2C man in the middle	128	Mode of operation	139
Understanding SPI Mode of operation	129 130	Sniffing D1W Injecting D1W	141 141
Sniffing SPI	130	D1W – man in the middle	142
Injecting SPI	133	Summary	142
SPI – man in the middle	133	Questions	143

7

Extracting and Manipulating Onboard Storage

Technical requirements	146
Finding the data	146
EEPROMs	146
EMMC and NAND/NOR Flash	147
Hard drives, SSDs, and other storage	
mediums	147
Extracting the data	148
On-chip firmware	148
Onboard storage – specific interfaces	149
Onboard storage – common interfaces	149

Understanding unknown	
storage structures	151
Unknown storage formats	151
Well-known storage formats	152
Let's look for storage in our Furby	153
Mounting filesystems	159
Repacking	160
Summary	161
Questions	161
Further reading	161
0	
Summary Questions	161 161

8

Attacking Wi-Fi, Bluetooth, and BLE

Technical requirements Basics of networking Networking in embedded systems using Wi-Fi Selecting Wi-Fi hardware Creating our access point Creating the access point and the	164 164 165 165 165	Bluetooth basics Discovering Bluetooth Native Linux Bluetooth tools – looking into the joystick crash Sniffing the BT activity on your host Sniffing raw BT BLE	175 178 179 182
basic network services	166	Summary	188
Networking in embedded systems using Bluetooth	169	Questions	188

9

Software-Defined Radio Attacks

Technical requirements	190	Understanding and selecting	
Introduction to arbitrary		the hardware	191
radio/SDR	190	Looking into a radio device	192

Receiving the signal – a look at antennas	192	MSK Getting back to our signal	204 205
Looking into the radio spectru Finding back the data Identifying modulations – a didactic example	m194 198 200	Demodulating the signal Clock Recovery MM WPCR	206 210 211
AM/ASK FM/FSK PM/PSK	200 201 202 203	Sending it back Summary Questions	212 212 213

Section 3: Attacking the Software

10

Accessing the Debug Interfaces

Technical requirements	218	Very hard – JTAGulating	228
Debugging/programming protocols – What are they		Using OpenOCD	231
and what are they used for?	218	Installing OpenOCD	232
•		The adapter file	233
Legitimate usage	218	The target file	234
Using JTAG to attack a system	219		
Finding the pins	224	Practical case Summary	240 246
The PCB "plays nicely"	225	•	-
A bit harder	228	Questions	247

11

Static Reverse Engineering and Analysis

Technical requirements Executable formats	250 250	Dump structure – the bluepill as an example	257
Understanding operating system formats	251	Analyzing firmware – introduction to Ghidra	258
Dump formats and memory images	256	Getting to know Ghidra with a very simple ARM Linux executable	258

Going into second gear – Ghidra on		Reversing our target function	277
raw binaries for the STM32	268	6	270
First identification pass	272	Summary	278
·		Questions	279

12

Dynamic Reverse Engineering

Technical requirements What is dynamic reverse	282	Exploring the most useful ARM instructions	291
engineering and why do it?	282	Using dynamic reverse	
Leveraging OpenOCD and GDB	283	engineering – an example	296
GDB? But I know nothing about it!	285	First Ghidra inspection	297
Understanding APM		Reversing the expected password	297
Understanding ARM assembly – a primer	287	Of course, I aced the test	307
General information and syntax	288	Summary	308
		Questions	308

13

Scoring and Reporting Your Vulnerabilities

Scoring your vulnerabilities	312	Report quality	318
Being understandable to everyone	316	When engineers do not want to re-engineer	319
Building your report template	316	Summary	322
Usage of language in a report	317	Questions	322

14

Wrapping It Up – Mitigations and Good Practices

Industry good practices – what are they and where to find		Common problems and their mitigations	328
them	324	Establishing a trust relationship	
OWASP loT top 10	324	between the backend and a device	328
The CIS benchmarks	327	Storing secrets and confidential data	330
NIST hardware security guidelines	328		

Cryptographic applications in sensitive applications JTAG, bootloaders, and serial/UART interfaces Assessments	330 331	What about now? Self-teaching and your first project Closing words	332 333	
Chapter 1	335	Chapter 8	341	
Chapter 2	335	Chapter 9	342	
Chapter 3	336	Chapter 10	342	
Chapter 4	338	Chapter 11	343	
Chapter 5	338	Chapter 12	344	
Chapter 6	340	Chapter 13	345	
Chapter 7	341			
Other Books You May Enjoy				
Index				