
Practical Hardware
Pentesting

A guide to attacking embedded systems and
protecting them against the most common
hardware attacks

Jean-Georges Valle

BIRMINGHAM—MUMBAI

Practical Hardware Pentesting
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar
Content Development Editor: Romy Dias
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: March 2021
Production reference: 1040321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-913-3
www.packt.com

http://www.packt.com

To my father. I wouldn't be who I am without you.

Contributors

About the author
Jean-Georges Valle is a hardware penetration tester based in Belgium. His background
was in software security, with hardware being a hobby, and he then started to look into
the security aspects of hardware. He has spent the last decade testing various systems,
from industrial logic controllers to city-scale IoT, and from media distribution to power
metering. He has learned to attack embedded systems and to leverage them against
cloud-scale infrastructure. He is the lead hardware technical expert in an offensive
security team of a big four company.

Jean-Georges holds a master's degree in information security and focuses on security at
the point of intersection with hardware and software, hardware and software interaction,
exploit development in embedded systems, and open source hardware.

I wish to thank my parents for supporting me and loving me
unconditionally, Vito and Jon for giving me an opportunity when I needed

it, and Ieva for accepting that this book was competing with her for my time
and attention.

About the reviewers
Ryan Slaugh has been a maker and breaker of things for over 20 years. Ryan got his start
in electrical systems, and augmented his learning to include the analog, digital, embedded,
software, and cybersecurity fields. He continues to practice and add to his skill sets in
his home lab, and this allows him to do what he loves the most: solve problems with
technology. When not working with technology, Ryan enjoys traveling around the globe
and exploring the less inhabited areas of the Pacific Northwest. His greatest joy is being
with his family on their small hobby farm in Washington State, USA.

Neeraj Thakur is a manager in the risk advisory practice of Deloitte and comes with more
than 9 years' experience in the area of information and cybersecurity. He holds a master's
degree in cybersecurity from the Indian Institute of Information Technology, Allahabad,
and has extensive experience in penetration and security testing of various embedded
devices and IoT-enabled products. He is a certified ISA/IEC 62443 cybersecurity
fundamentals specialist and has worked extensively in the areas of industrial automation
and control system security. He has delivered multiple sessions on IoT and ICS security,
as well as in the security community, including Nullcon and CySeck. Neeraj is passionate
about reverse engineering and security innovations using Python.

Table of Contents
Preface

Section 1: Getting to Know the Hardware

1
Setting Up Your Pentesting Lab and Ensuring Lab Safety

Prerequisites – the basics you
will need 4
Languages 5
Hardware-related skills 5
System configuration 5
Setting up a general lab 7
Safety 8

Approach to buying test
equipment 9
Home lab versus company lab 9
Approaching instrument selection 10
What to buy, what it does, and when
to buy it 11

Small tools and equipment 21
Renting versus buying 23

The component pantry 23
The pantry itself 23
The stock 24

Sample labs 25
Beginner 25
Amateur 26
Pro 27

Summary 27
Questions 28

2
Understanding Your Target

The CPU block 30
CPU roles 30
Common embedded systems
architectures 31

The storage block 34
RAM 34
Program storage 34
Storing data 35

ii Table of Contents

The power block 35
The power block from a pentesting
point of view 35

The networking blocks 36
Common networking protocols in
embedded systems 36

The sensor blocks 41

Analog sensors 41
Digital sensors 42

The actuator blocks 42
The interface blocks 43
Summary 43
Questions 44
Further reading 44

3
Identifying the Components of Your Target

Technical requirements 46
Harvesting information –
reading the manual 47
Taking a system analysis approach 47
For our Furby manual 47

Harvesting information —
researching on the internet 49
For the Furby 49

Starting the system diagram 52
For our Furby 53

Continuing system exploration
– identifying and putting
components in the diagram 54
Opening the Furby 54
Manipulating the system 54
Dismantling the Furby 55
Identifying chips 55
Chips in the Furby 56
Identifying unmarked/mysterious chips 59
Furby — the mystery meat 61
The borders of functional blocks 68

Summary 68
Questions 69

4
Approaching and Planning the Test

The STRIDE methodology 72
Finding the crown jewels in the
assessed system 74

Security properties – what do
we expect? 77
Communication 78
Maintenance 78
System integrity and self-testing 79

Protection of secrets or security
elements 79

Reaching the crown jewels –
how do we create impacts? 80
STRIDE through the components to
compromise properties 80
For the example system – the Furby 82

Planning the test 85

Table of Contents iii

Balancing your scenarios 85

Summary 91

Questions 91
Further reading 91

Section 2: Attacking the Hardware

5
Our Main Attack Platform

Technical requirements 96
Introduction to the bluepill
board 97
A board to do what? 97
What is it? 97

Why C and not Arduino? 98
The documentation 99
Memory-projected registers 100

The toolchain 100
The compilation process 101
Driving the compilation 102

Flashing the chip 104
Putting it into practice for the bluepill 104

Introduction to C 106
Operators 107
Types 108
The dreaded pointer 109
Preprocessor directives 110
Functions 111

Summary 112
Questions 112
Further reading 112

6
Sniffing and Attacking the Most Common Protocols

Technical requirements 114
Hardware 114

Understanding I2C 115
Mode of operation 115
Sniffing I2C 123
Injecting I2C 128
I2C man in the middle 128

Understanding SPI 129
Mode of operation 130
Sniffing SPI 132
Injecting SPI 133
SPI – man in the middle 133

Understanding UART 134
Mode of operation 135
Sniffing UART 137
Injecting UART 137
UART – man in the middle 138

Understanding D1W 139
Mode of operation 139
Sniffing D1W 141
Injecting D1W 141
D1W – man in the middle 142

Summary 142
Questions 143

iv Table of Contents

7
Extracting and Manipulating Onboard Storage

Technical requirements 146
Finding the data 146
EEPROMs 146
EMMC and NAND/NOR Flash 147
Hard drives, SSDs, and other storage
mediums 147

Extracting the data 148
On-chip firmware 148
Onboard storage – specific interfaces 149
Onboard storage – common interfaces 149

Understanding unknown
storage structures 151
Unknown storage formats 151
Well-known storage formats 152
Let's look for storage in our Furby 153

Mounting filesystems 159
Repacking 160
Summary 161
Questions 161
Further reading 161

8
Attacking Wi-Fi, Bluetooth, and BLE

Technical requirements 164
Basics of networking 164
Networking in embedded
systems using Wi-Fi 165
Selecting Wi-Fi hardware 165
Creating our access point 165
Creating the access point and the
basic network services 166

Networking in embedded
systems using Bluetooth 169

Bluetooth basics 169
Discovering Bluetooth 171
Native Linux Bluetooth tools – looking
into the joystick crash 175
Sniffing the BT activity on your host 178
Sniffing raw BT 179
BLE 182

Summary 188
Questions 188

9
Software-Defined Radio Attacks

Technical requirements 190
Introduction to arbitrary
radio/SDR 190

Understanding and selecting
the hardware 191
Looking into a radio device 192

Table of Contents v

Receiving the signal – a look at
antennas 192

Looking into the radio spectrum 194
Finding back the data 198
Identifying modulations – a
didactic example 200
AM/ASK 201
FM/FSK 202
PM/PSK 203

MSK 204
Getting back to our signal 205

Demodulating the signal 206
Clock Recovery MM 210
WPCR 211

Sending it back 212
Summary 212
Questions 213

Section 3: Attacking the Software

10
Accessing the Debug Interfaces

Technical requirements 218
Debugging/programming
protocols – What are they
and what are they used for? 218
Legitimate usage 218
Using JTAG to attack a system 219

Finding the pins 224
The PCB "plays nicely" 225
A bit harder 228

Very hard – JTAGulating 228

Using OpenOCD 231
Installing OpenOCD 232
The adapter file 233
The target file 234

Practical case 240
Summary 246
Questions 247

11
Static Reverse Engineering and Analysis

Technical requirements 250
Executable formats 250
Understanding operating
system formats 251

Dump formats and memory
images 256

Dump structure – the bluepill as
an example 257

Analyzing firmware –
introduction to Ghidra 258
Getting to know Ghidra with a very
simple ARM Linux executable 258

vi Table of Contents

Going into second gear – Ghidra on
raw binaries for the STM32 268
First identification pass 272

Reversing our target function 277

Summary 278
Questions 279

12
Dynamic Reverse Engineering

Technical requirements 282
What is dynamic reverse
engineering and why do it? 282
Leveraging OpenOCD and GDB 283
GDB? But... I know nothing about it! 285

Understanding ARM
assembly – a primer 287
General information and syntax 288

Exploring the most useful
ARM instructions 291

Using dynamic reverse
engineering – an example 296
First Ghidra inspection 297
Reversing the expected password 297
Of course, I aced the test 307

Summary 308
Questions 308

13
Scoring and Reporting Your Vulnerabilities

Scoring your vulnerabilities 312
Being understandable to
everyone 316
Building your report template 316
Usage of language in a report 317

Report quality 318

When engineers do not want
to re-engineer 319
Summary 322
Questions 322

14
Wrapping It Up – Mitigations and Good Practices

Industry good practices – what
are they and where to find
them 324
OWASP IoT top 10 324
The CIS benchmarks 327
NIST hardware security guidelines 328

Common problems and
their mitigations 328
Establishing a trust relationship
between the backend and a device 328
Storing secrets and confidential data 330

Table of Contents vii

Cryptographic applications in
sensitive applications 330
JTAG, bootloaders, and serial/UART
interfaces 331

What about now? Self-teaching
and your first project 332
Closing words 333

Assessments

Chapter 1 335
Chapter 2 335
Chapter 3 336
Chapter 4 338
Chapter 5 338
Chapter 6 340
Chapter 7 341

Chapter 8 341
Chapter 9 342
Chapter 10 342
Chapter 11 343
Chapter 12 344
Chapter 13 345

Other Books You May Enjoy
Index

