
330 Hudson Street, New York, NY 10013

PROBLEM SOLVING with C++
Tenth Edition
Global Edition

Walter J. Savitch
UNIVERSITY OF CALIFORNIA, SAN DIEGO

CONTRIBUTOR

Kenrick Mock
UNIVERSITY OF ALASKA, ANCHORAGE

 Senior Vice President Courseware Portfolio Management: Marcia J. Horton
 Director, Portfolio Management: Engineering,
 Computer Science & Global Editions: Julian Partridge
 Portfolio Manager: Matt Goldstein
 Assistant Acquisitions Editor, Global Edition: Aditee Agarwal
 Portfolio Management Assistant: Kristy Alaura
 Field Marketing Manager: Demetrius Hall
 Product Marketing Manager: Yvonne Vannatta
 Managing Producer, ECS and Math: Scott Disanno
 Content Producer: Sandra L. Rodriguez
 Project Editor, Global Edition: K.K. Neelakantan
 Senior Manufacturing Controller, Global Edition: Angela Hawksbee
 Manager, Media Production, Global Edition: Vikram Kumar
 Cover Designer: Lumina Datamatics, Inc.
 Cover Photo: Iana Chyrva/Shutterstock

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of Walter Savitch to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Problem Solving with C++, 10th Edition, ISBN 978-0-13-444828-2
by Walter Savitch published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-22282-4
ISBN 13: 978-1-292-22282-0

Typeset by iEnergizer Aptara®, Ltd.

Printed and bound in Malaysia

http://www.pearsonglobaleditions.com

Brief Contents

Chapter 1 Introduction to Computers and C++ Programming 33

Chapter 2 C++ Basics 71

Chapter 3 More Flow of Control 143

Chapter 4 Procedural Abstraction and Functions That Return

a Value 213

Chapter 5 Functions for All Subtasks 283

Chapter 6 I/O Streams as an Introduction to Objects

and Classes 339

Chapter 7 Arrays 411

Chapter 8 Strings and Vectors 485

Chapter 9 Pointers and Dynamic Arrays 541

Chapter 10 Defining Classes 575

Chapter 11 Friends, Overloaded Operators, and Arrays

in Classes 653

Chapter 12 Separate Compilation and Namespaces 737

15

Chapter 13 Pointers and Linked Lists 773

Chapter 14 Recursion 823

Chapter 15 Inheritance 867

Chapter 16 Exception Handling 927

Chapter 17 Templates 959

Chapter 18 Standard Template Library and C++11 991

Appendices
1 C++ Keywords 1067

2 Precedence of Operators 1068

3 The ASCII Character Set 1070

4 Some Library Functions 1071

5 Inline Functions 1078

6 Overloading the Array Index Square Brackets 1079

7 The this Pointer 1081

8 Overloading Operators as Member Operators 1084

Credits 1086

Index 1089

16 BRIEF CONTENTS

Contents

Chapter 1 Introduction to Computers and C++ Programming 33

1.1 COMPUTER SYSTEMS 34

Hardware 34

Software 39

High-Level Languages 40

Compilers 41

History Note 44

1.2 PROGRAMMING AND PROBLEM-SOLVING 44

Algorithms 44

Program Design 47

Object-Oriented Programming 48

The Software Life Cycle 49

1.3 INTRODUCTION TO C++ 50

Origins of the C++ Language 50

A Sample C++ Program 51

Pitfall: Using the Wrong Slash in \n 55

Programming Tip: Input and Output Syntax 55

Layout of a Simple C++ Program 56

Pitfall: Putting a Space Before the include File Name 58

Compiling and Running a C++ Program 58

Pitfall: Compiling a C++11 Program 59

Programming Tip: Getting Your Program to Run 59

1.4 TESTING AND DEBUGGING 61

Kinds of Program Errors 62

Pitfall: Assuming Your Program Is Correct 63

Chapter Summary 64

Answers to Self-Test Exercises 65

Practice Programs 67

Programming Projects 68

17

Chapter 2 C++ Basics 71

2.1 VARIABLES AND ASSIGNMENTS 72

Variables 72

Names: Identifiers 74

Variable Declarations 77

Assignment Statements 77

Pitfall: Uninitialized Variables 79

Programming Tip: Use Meaningful Names 81

2.2 INPUT AND OUTPUT 82

Output Using cout 82

Include Directives and Namespaces 84

Escape Sequences 85

Programming Tip: End Each Program with a \n or endl 87

Formatting for Numbers with a Decimal Point 87

Input Using cin 88

Designing Input and Output 90

Programming Tip: Line Breaks in I/O 90

2.3 DATA TYPES AND EXPRESSIONS 92

The Types int and double 92

Other Number Types 94

C++11 Types 95

The Type char 96

The Type bool 98

Introduction to the Class string 98

Type Compatibilities 100

Arithmetic Operators and Expressions 101

Pitfall: Whole Numbers in Division 104

More Assignment Statements 106

2.4 SIMPLE FLOW OF CONTROL 106

A Simple Branching Mechanism 107

Pitfall: Strings of Inequalities 112

Pitfall: Using = in place of == 113

Compound Statements 114

Simple Loop Mechanisms 116

Increment and Decrement Operators 119

Programming Example: Charge Card Balance 121

Pitfall: Infinite Loops 122

18 CONTENTS

 CONTENTS 19

2.5 PROGRAM STYLE 125

Indenting 125

Comments 125

Naming Constants 127

Chapter Summary 130

Answers to Self-Test Exercises 130

Practice Programs 135

Programming Projects 137

Chapter 3 More Flow of Control 143

3.1 USING BOOLEAN EXPRESSIONS 144

Evaluating Boolean Expressions 144

Pitfall: Boolean Expressions Convert to int Values 148

Enumeration Types (Optional) 151

3.2 MULTIWAY BRANCHES 152

Nested Statements 152

Programming Tip: Use Braces in Nested Statements 153

Multiway if-else Statements 155

Programming Example: State Income Tax 157

The switch Statement 160

Pitfall: Forgetting a break in a switch Statement 164

Using switch Statements for Menus 165

Blocks 167

Pitfall: Inadvertent Local Variables 170

3.3 MORE ABOUT C++ LOOP STATEMENTS 171

The while Statements Reviewed 171

Increment and Decrement Operators Revisited 173

The for Statement 176

Pitfall: Extra Semicolon in a for Statement 181

What Kind of Loop to Use 182

Pitfall: Uninitialized Variables and Infinite Loops 184

The break Statement 185

Pitfall: The break Statement in Nested Loops 186

3.4 DESIGNING LOOPS 187

Loops for Sums and Products 187

Ending a Loop 189

20 CONTENTS

Nested Loops 192

Debugging Loops 194

Chapter Summary 197

Answers to Self-Test Exercises 198

Practice Programs 204

Programming Projects 206

Chapter 4 Procedural Abstraction and Functions That Return
a Value 213

4.1 TOP-DOWN DESIGN 214

4.2 PREDEFINED FUNCTIONS 215

Using Predefined Functions 215

Random Number Generation 220

Type Casting 222

Older Form of Type Casting 224

Pitfall: Integer Division Drops the Fractional Part 224

4.3 PROGRAMMER-DEFINED FUNCTIONS 225

Function Definitions 225

Functions That Return a Boolean Value 231

Alternate Form for Function Declarations 231

Pitfall: Arguments in the Wrong Order 232

Function Definition–Syntax Summary 233

More About Placement of Function Definitions 234

Programming Tip: Use Function Calls in Branching Statements 235

4.4 PROCEDURAL ABSTRACTION 236

The Black-Box Analogy 236

Programming Tip: Choosing Formal Parameter Names 239

Programming Tip: Nested Loops 240

Case Study: Buying Pizza 243

Programming Tip: Use Pseudocode 249

4.5 SCOPE AND LOCAL VARIABLES 250

The Small Program Analogy 250

Programming Example: Experimental Pea Patch 253

Global Constants and Global Variables 253

Call-by-Value Formal Parameters Are Local Variables 256

Block Scope 258

 CONTENTS 21

Namespaces Revisited 259

Programming Example: The Factorial Function 262

4.6 OVERLOADING FUNCTION NAMES 264

Introduction to Overloading 264

Programming Example: Revised Pizza-Buying Program 267

Automatic Type Conversion 270

Chapter Summary 272

Answers to Self-Test Exercises 272

Practice Programs 277

Programming Projects 279

Chapter 5 Functions for All Subtasks 283

5.1 VOID FUNCTIONS 284

Definitions of void Functions 284

Programming Example: Converting Temperatures 287

return Statements in void Functions 287

5.2 CALL-BY-REFERENCE PARAMETERS 291

A First View of Call-by-Reference 291

Call-by-Reference in Detail 294

Programming Example: The swapValues Function 299

Mixed Parameter Lists 300

Programming Tip: What Kind of Parameter to Use 301

Pitfall: Inadvertent Local Variables 302

5.3 USING PROCEDURAL ABSTRACTION 305

Functions Calling Functions 305

Preconditions and Postconditions 307

Case Study: Supermarket Pricing 308

5.4 TESTING AND DEBUGGING FUNCTIONS 313

Stubs and Drivers 314

5.5 GENERAL DEBUGGING TECHNIQUES 319

Keep an Open Mind 319

Check Common Errors 319

Localize the Error 320

The assert Macro 322

22 CONTENTS

Chapter Summary 324

Answers to Self-Test Exercises 325

Practice Programs 328

Programming Projects 331

Chapter 6 I/O Streams as an Introduction to Objects and Classes 339

6.1 STREAMS AND BASIC FILE I/O 340

Why Use Files for I/O? 341

File I/O 342

Introduction to Classes and Objects 346

Programming Tip: Check Whether a File Was Opened Successfully 348

Techniques for File I/O 350

Appending to a File (Optional) 354

File Names as Input (Optional) 355

6.2 TOOLS FOR STREAM I/O 357

Formatting Output with Stream Functions 357

Manipulators 363

Streams as Arguments to Functions 366

Programming Tip: Checking for the End of a File 366

A Note on Namespaces 369

Programming Example: Cleaning Up a File Format 370

6.3 CHARACTER I/O 372

The Member Functions get and put 372

The putback Member Function (Optional) 376

Programming Example: Checking Input 377

Pitfall: Unexpected '\n' in Input 379

Programming Example: Another newLine Function 381

Default Arguments for Functions (Optional) 382

The eof Member Function 387

Programming Example: Editing a Text File 389

Predefined Character Functions 390

Pitfall: toupper and tolower Return Values 392

Chapter Summary 394

Answers to Self-Test Exercises 395

Practice Programs 402

Programming Projects 404

 CONTENTS 23

Chapter 7 Arrays 411

7.1 INTRODUCTION TO ARRAYS 412

Declaring and Referencing Arrays 412

Programming Tip: Use for Loops with Arrays 414

Pitfall: Array Indexes Always Start with Zero 414

Programming Tip: Use a Defined Constant for the Size of

an Array 414

Arrays in Memory 416

Pitfall: Array Index Out of Range 417

Initializing Arrays 420

Programming Tip: C++11 Range-Based for Statement 420

7.2 ARRAYS IN FUNCTIONS 423

Indexed Variables as Function Arguments 423

Entire Arrays as Function Arguments 425

The const Parameter Modifier 428

Pitfall: Inconsistent Use of const Parameters 431

Functions That Return an Array 431

Case Study: Production Graph 432

7.3 PROGRAMMING WITH ARRAYS 445

Partially Filled Arrays 445

Programming Tip: Do Not Skimp on Formal Parameters 448

Programming Example: Searching an Array 448

Programming Example: Sorting an Array 451

Programming Example: Bubble Sort 455

7.4 MULTIDIMENSIONAL ARRAYS 458

Multidimensional Array Basics 459

Multidimensional Array Parameters 459

Programming Example: Two-Dimensional Grading

Program 461

Pitfall: Using Commas Between Array Indexes 465

Chapter Summary 466

Answers to Self-Test Exercises 467

Practice Programs 471

Programming Projects 473

24 CONTENTS

Chapter 8 Strings and Vectors 485

8.1 AN ARRAY TYPE FOR STRINGS 487

C-String Values and C-String Variables 487

Pitfall: Using = and == with C Strings 490

Other Functions in <cstring> 492

Pitfall: Copying past the end of a C-string using strcpy 495

C-String Input and Output 498

C-String-to-Number Conversions and Robust Input 500

8.2 THE STANDARD STRING CLASS 506

Introduction to the Standard Class string 506

I/O with the Class string 509

Programming Tip: More Versions of getline 512

Pitfall: Mixing cin >> variable; and getline 513

String Processing with the Class string 514

Programming Example: Palindrome Testing 518

Converting between string Objects and C Strings 521

Converting Between Strings and Numbers 522

8.3 VECTORS 523

Vector Basics 523

Pitfall: Using Square Brackets Beyond the Vector Size 526

Programming Tip: Vector Assignment Is Well Behaved 527

Efficiency Issues 527

Chapter Summary 529

Answers to Self-Test Exercises 529

Practice Programs 531

Programming Projects 532

Chapter 9 Pointers and Dynamic Arrays 541

9.1 POINTERS 542

Pointer Variables 543

Basic Memory Management 550

Pitfall: Dangling Pointers 551

Static Variables and Automatic Variables 552

Programming Tip: Define Pointer Types 552

 CONTENTS 25

9.2 DYNAMIC ARRAYS 555

Array Variables and Pointer Variables 555

Creating and Using Dynamic Arrays 556

Pointer Arithmetic (Optional) 562

Multidimensional Dynamic Arrays (Optional) 564

Chapter Summary 566

Answers to Self-Test Exercises 566

Practice Programs 567

Programming Projects 568

Chapter 10 Defining Classes 575

10.1 STRUCTURES 576

Structures for Diverse Data 576

Pitfall: Forgetting a Semicolon in a Structure Definition 581

Structures as Function Arguments 582

Programming Tip: Use Hierarchical Structures 583

Initializing Structures 585

10.2 CLASSES 588

Defining Classes and Member Functions 588

Public and Private Members 593

Programming Tip: Make All Member Variables Private 601

Programming Tip: Define Accessor and Mutator Functions 601

Programming Tip: Use the Assignment Operator with Objects 603

Programming Example: BankAccount Class—Version 1 604

Summary of Some Properties of Classes 608

Constructors for Initialization 610

Programming Tip: Always Include a Default Constructor 618

Pitfall: Constructors with No Arguments 619

Member Initializers and Constructor Delegation in C++11 621

10.3 ABSTRACT DATA TYPES 622

Classes to Produce Abstract Data Types 623

Programming Example: Alternative Implementation of a Class 627

10.4 INTRODUCTION TO INHERITANCE 632

Derived Classes 633

Defining Derived Classes 634

26 CONTENTS

Chapter Summary 638

Answers to Self-Test Exercises 639

Practice Programs 645

Programming Projects 646

Chapter 11 Friends, Overloaded Operators, and Arrays in
Classes 653

11.1 FRIEND FUNCTIONS 654

Programming Example: An Equality Function 654

Friend Functions 658

Programming Tip: Define Both Accessor Functions and Friend Functions 660

Programming Tip: Use Both Member and Nonmember Functions 662

Programming Example: Money Class (Version 1) 662

Implementation of digitToInt (Optional) 669

Pitfall: Leading Zeros in Number Constants 670

The const Parameter Modifier 672

Pitfall: Inconsistent Use of const 673

11.2 OVERLOADING OPERATORS 677

Overloading Operators 678

Constructors for Automatic Type Conversion 681

Overloading Unary Operators 683

Overloading >> and << 684

11.3 ARRAYS AND CLASSES 694

Arrays of Classes 694

Arrays as Class Members 698

Programming Example: A Class for a Partially Filled Array 699

11.4 CLASSES AND DYNAMIC ARRAYS 701

Programming Example: A String Variable Class 702

Destructors 705

Pitfall: Pointers as Call-by-Value Parameters 708

Copy Constructors 709

Overloading the Assignment Operator 714

Chapter Summary 717

Answers to Self-Test Exercises 717

Practice Programs 727

Programming Projects 728

 CONTENTS 27

Chapter 12 Separate Compilation and Namespaces 737

12.1 SEPARATE COMPILATION 738

ADTs Reviewed 739

Case Study: DigitalTime—A Class Compiled Separately 740

Using #ifndef 749

Programming Tip: Defining Other Libraries 752

12.2 NAMESPACES 753

Namespaces and using Directives 754

Creating a Namespace 755

Qualifying Names 758

A Subtle Point About Namespaces (Optional) 759

Unnamed Namespaces 760

Programming Tip: Choosing a Name for a Namespace 765

Pitfall: Confusing the Global Namespace and the Unnamed Namespace 766

Chapter Summary 767

Answers to Self-Test Exercises 768

Practice Programs 770

Programming Projects 772

Chapter 13 Pointers and Linked Lists 773

13.1 NODES AND LINKED LISTS 774

Nodes 774

nullptr 779

Linked Lists 780

Inserting a Node at the Head of a List 781

Pitfall: Losing Nodes 784

Searching a Linked List 785

Pointers as Iterators 789

Inserting and Removing Nodes Inside a List 789

Pitfall: Using the Assignment Operator with Dynamic Data Structures 791

Variations on Linked Lists 794

Linked Lists of Classes 796

13.2 STACKS AND QUEUES 799

Stacks 799

Programming Examples: A Stack Class 800

Queues 805

Programming Examples: A Queue Class 806

28 CONTENTS

Chapter Summary 810

Answers to Self-Test Exercises 810

Practice Programs 813

Programming Projects 814

Chapter 14 Recursion 823

14.1 RECURSIVE FUNCTIONS FOR TASKS 825

Case Study: Vertical Numbers 825

A Closer Look at Recursion 831

Pitfall: Infinite Recursion 833

Stacks for Recursion 834

Pitfall: Stack Overflow 836

Recursion Versus Iteration 836

14.2 RECURSIVE FUNCTIONS FOR VALUES 838

General Form for a Recursive Function That Returns a Value 838

Programming Example: Another Powers Function 838

14.3 THINKING RECURSIVELY 843

Recursive Design Techniques 843

Case Study: Binary Search—An Example of Recursive Thinking 844

Programming Example: A Recursive Member Function 852

Chapter Summary 856

Answers to Self-Test Exercises 856

Practice Programs 861

Programming Projects 861

Chapter 15 Inheritance 867

15.1 INHERITANCE BASICS 868

Derived Classes 871

Constructors in Derived Classes 879

Pitfall: Use of Private Member Variables from the Base Class 882

Pitfall: Private Member Functions Are Effectively Not Inherited 884

The protected Qualifier 884

Redefinition of Member Functions 887

Redefining Versus Overloading 890

Access to a Redefined Base Function 892

15.2 INHERITANCE DETAILS 893

Functions That Are Not Inherited 893

 CONTENTS 29

Assignment Operators and Copy Constructors in Derived Classes 894

Destructors in Derived Classes 895

15.3 POLYMORPHISM 896

Late Binding 897

Virtual Functions in C++ 898

Virtual Functions and Extended Type Compatibility 903

Pitfall: The Slicing Problem 907

Pitfall: Not Using Virtual Member Functions 908

Pitfall: Attempting to Compile Class Definitions Without Definitions for Every

Virtual Member Function 909

Programming Tip: Make Destructors Virtual 909

Chapter Summary 911

Answers to Self-Test Exercises 911

Practice Programs 915

Programming Projects 918

Chapter 16 Exception Handling 927

16.1 EXCEPTION-HANDLING BASICS 929

A Toy Example of Exception Handling 929

Defining Your Own Exception Classes 938

Multiple Throws and Catches 938

Pitfall: Catch the More Specific Exception First 942

Programming Tip: Exception Classes Can Be Trivial 943

Throwing an Exception in a Function 943

Exception Specification 945

Pitfall: Exception Specification in Derived Classes 947

16.2 PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING 948

When to Throw an Exception 948

Pitfall: Uncaught Exceptions 950

Pitfall: Nested try-catch Blocks 950

Pitfall: Overuse of Exceptions 950

Exception Class Hierarchies 951

Testing for Available Memory 951

Rethrowing an Exception 952

Chapter Summary 952

Answers to Self-Test Exercises 952

Practice Programs 954

Programming Projects 955

30 CONTENTS

Chapter 17 Templates 959

17.1 TEMPLATES FOR ALGORITHM ABSTRACTION 960

Templates for Functions 961

Pitfall: Compiler Complications 965

Programming Example: A Generic Sorting Function 967

Programming Tip: How to Define Templates 971

Pitfall: Using a Template with an Inappropriate Type 972

17.2 TEMPLATES FOR DATA ABSTRACTION 973

Syntax for Class Templates 973

Programming Example: An Array Class 976

Chapter Summary 983

Answers to Self-Test Exercises 983

Practice Programs 987

Programming Projects 987

Chapter 18 Standard Template Library and C++11 991

18.1 ITERATORS 993

using Declarations 993

Iterator Basics 994

Programming Tip: Use auto to Simplify Variable Declarations 998

Pitfall: Compiler Problems 998

Kinds of Iterators 1000

Constant and Mutable Iterators 1004

Reverse Iterators 1005

Other Kinds of Iterators 1006

18.2 CONTAINERS 1007

Sequential Containers 1008

Pitfall: Iterators and Removing Elements 1012

Programming Tip: Type Definitions in Containers 1013

Container Adapters stack and queue 1013

Associative Containers set and map 1017

Programming Tip: Use Initialization, Ranged for, and auto with

Containers 1024

Efficiency 1024

18.3 GENERIC ALGORITHMS 1025

Running Times and Big-O Notation 1026

Container Access Running Times 1029

 CONTENTS 31

Nonmodifying Sequence Algorithms 1031

Container Modifying Algorithms 1035

Set Algorithms 1037

Sorting Algorithms 1038

18.4 C++ IS EVOLVING 1039

std::array 1039

Regular Expressions 1040

Threads 1045

Smart Pointers 1051

Chapter Summary 1057

Answers to Self-Test Exercises 1058

Practice Programs 1059

Programming Projects 1061

APPENDICES

1 C++ Keywords 1067

2 Precedence of Operators 1068

3 The ASCII Character Set 1070

4 Some Library Functions 1071

5 Inline Functions 1078

6 Overloading the Array Index Square Brackets 1079

7 The this Pointer 1081

8 Overloading Operators as Member Operators 1084

CREDITS 1086

INDEX 1089

