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It is amazing, and rather disconcerting, to realize how much software we run
without knowing for sure what it does. We buy software off the shelf in shrink-
wrapped packages. We run setup utilities that install numerous files, change
system settings, delete or disable older versions and superceded utilities, and
modify critical registry files. Every time we access a Web site, we may invoke
or interact with dozens of programs and code segments that are necessary to
give us the intended look, feel, and behavior. We purchase CDs with hundreds
of games and utilities or download them as shareware. We exchange useful
programs with colleagues and friends when we have tried only a fraction of
each program’s features.

Then, we download updates and install patches, trusting that the vendors
are sure that the changes are correct and complete. We blindly hope that the
latest change to each program keeps it compatible with all of the rest of the
programs on our system. We rely on much software that we do not understand
and do not know very well at all.

I refer to a lot more than our desktop or laptop personal computers. The
concept of ubiquitous computing, or “software everywhere,” is rapidly
putting software control and interconnection in devices throughout our envi-
ronment. The average automobile now has more lines of software code in its
engine controls than were required to land the Apollo astronauts on the Moon.

Today’s software has become so complex and interconnected that the devel-
oper often does not know all the features and repercussions of what has been
created in an application. It is frequently too expensive and time-consuming to
test all control paths of a program and all groupings of user options. Now, with
multiple architecture layers and an explosion of networked platforms that the
software will run on or interact with, it has become literally impossible for all
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combinations to be examined and tested. Like the problems of detecting drug
interactions in advance, many software systems are fielded with issues
unknown and unpredictable.

Reverse engineering is a critical set of techniques and tools for understand-
ing what software is really all about. Formally, it is “the process of analyzing a
subject system to identify the system’s components and their interrelation-
ships and to create representations of the system in another form or at a higher
level of abstraction”(IEEE 1990). This allows us to visualize the software’s
structure, its ways of operation, and the features that drive its behavior. The
techniques of analysis, and the application of automated tools for software
examination, give us a reasonable way to comprehend the complexity of the
software and to uncover its truth.

Reverse engineering has been with us a long time. The conceptual Revers-
ing process occurs every time someone looks at someone else’s code. But, it
also occurs when a developer looks at his or her own code several days after it
was written. Reverse engineering is a discovery process. When we take a fresh
look at code, whether developed by ourselves or others, we examine and we
learn and we see things we may not expect. 

While it had been the topic of some sessions at conferences and computer
user groups, reverse engineering of software came of age in 1990. Recognition
in the engineering community came through the publication of a taxonomy on
reverse engineering and design recovery concepts in IEEE Software magazine.
Since then, there has been a broad and growing body of research on Reversing
techniques, software visualization, program understanding, data reverse engi-
neering, software analysis, and related tools and approaches. Research
forums, such as the annual international Working Conference on Reverse
Engineering (WCRE), explore, amplify, and expand the value of available tech-
niques. There is now increasing interest in binary Reversing, the principal
focus of this book, to support platform migration, interoperability, malware
detection, and problem determination.

As a management and information technology consultant, I have often been
asked: “How can you possibly condone reverse engineering?” This is soon fol-
lowed by: “You’ve developed and sold software. Don’t you want others to
respect and protect your copyrights and intellectual property?” This discus-
sion usually starts from the negative connotation of the term reverse engineer-
ing, particularly in software license agreements. However, reverse engineering
technologies are of value in many ways to producers and consumers of soft-
ware along the supply chain.

A stethoscope could be used by a burglar to listen to the lock mechanism of
a safe as the tumblers fall in place. But the same stethoscope could be used
by your family doctor to detect breathing or heart problems. Or, it could
be used by a computer technician to listen closely to the operating sounds 
of a sealed disk drive to diagnose a problem without exposing the drive to
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potentially-damaging dust and pollen. The tool is not inherently good or bad.
The issue is the use to which the tool is put.

In the early 1980s, IBM decided that it would no longer release to its cus-
tomers the source code for its mainframe computer operating systems. Main-
frame customers had always relied on the source code for reference in problem
solving and to tailor, modify, and extend the IBM operating system products. I
still have my button from the IBM user group Share that reads: “If SOURCE is
outlawed, only outlaws will have SOURCE,” a word play on a famous argu-
ment by opponents of gun-control laws. Applied to current software, this
points out that hackers and developers of malicious code know many tech-
niques for deciphering others’ software. It is useful for the good guys to know
these techniques, too.

Reverse engineering is particularly useful in modern software analysis for a
wide variety of purposes:

■■ Finding malicious code. Many virus and malware detection techniques
use reverse engineering to understand how abhorrent code is struc-
tured and functions. Through Reversing, recognizable patterns emerge
that can be used as signatures to drive economical detectors and code
scanners.

■■ Discovering unexpected flaws and faults. Even the most well-designed
system can have holes that result from the nature of our “forward engi-
neering” development techniques. Reverse engineering can help iden-
tify flaws and faults before they become mission-critical software
failures.

■■ Finding the use of others’ code. In supporting the cognizant use of
intellectual property, it is important to understand where protected
code or techniques are used in applications. Reverse engineering tech-
niques can be used to detect the presence or absence of software ele-
ments of concern.

■■ Finding the use of shareware and open source code where it was not
intended to be used. In the opposite of the infringing code concern, if a
product is intended for security or proprietary use, the presence of pub-
licly available code can be of concern. Reverse engineering enables the
detection of code replication issues.

■■ Learning from others’ products of a different domain or purpose.
Reverse engineering techniques can enable the study of advanced soft-
ware approaches and allow new students to explore the products of
masters. This can be a very useful way to learn and to build on a grow-
ing body of code knowledge. Many Web sites have been built by seeing
what other Web sites have done. Many Web developers learned HTML
and Web programming techniques by viewing the source of other sites.
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■■ Discovering features or opportunities that the original developers did
not realize. Code complexity can foster new innovation. Existing tech-
niques can be reused in new contexts. Reverse engineering can lead to
new discoveries about software and new opportunities for innovation.

In the application of computer-aided software engineering (CASE)
approaches and automated code generation, in both new system development
and software maintenance, I have long contended that any system we build
should be immediately run through a suite of reverse engineering tools. The
holes and issues that are uncovered would save users, customers, and support
staff many hours of effort in problem detection and solution. The savings
industry-wide from better code understanding could be enormous.

I’ve been involved in research and applications of software reverse engi-
neering for 30 years, on mainframes, mid-range systems and PCs, from pro-
gram language statements, binary modules, data files, and job control streams.
In that time, I have heard many approaches explained and seen many tech-
niques tried. Even with that background, I have learned much from this book
and its perspective on reversing techniques. I am sure that you will too.

Elliot Chikofsky 
Engineering Management and Integration (Herndon, VA) 
Chair, Reengineering Forum 
Executive Secretary, IEEE Technical Council on Software Engineering
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