
Eldad Eilam

Reversing: Secrets of
Reverse Engineering

01_574817 ffirs.qxd 3/16/05 8:37 PM Page iii

Reversing: Secrets of Reverse Engineering
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Control Number: 2005921595

ISBN-10: 0-7645-7481-7
ISBN-13: 978-0-7645-7481-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QR/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering any professional services. If professional assistance is required, the services of a com-
petent professional person should be sought. Neither the publisher nor the author shall be
liable for any damages arising herefrom. The fact that an organization or Website is referred
to in this work as a citation and/or a potential source of further information does not mean
that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet
Websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

01_574817 ffirs.qxd 3/16/05 8:37 PM Page iv

Credits

v

Executive Editor
Robert Elliott

Development Editor
Eileen Bien Calabro

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Editor
Pamela Hanley

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Denny Hager
Jennifer Heleine
Lynsey Osborn
Mary Gillot Virgin

Quality Control Technician
Leeann Harney

Proofreading and Indexing
TECHBOOKS Production Services

Cover Designer
Michael Trent

01_574817 ffirs.qxd 3/16/05 8:37 PM Page v

01_574817 ffirs.qxd 3/16/05 8:37 PM Page vi

This page intentionally left blank

It is amazing, and rather disconcerting, to realize how much software we run
without knowing for sure what it does. We buy software off the shelf in shrink-
wrapped packages. We run setup utilities that install numerous files, change
system settings, delete or disable older versions and superceded utilities, and
modify critical registry files. Every time we access a Web site, we may invoke
or interact with dozens of programs and code segments that are necessary to
give us the intended look, feel, and behavior. We purchase CDs with hundreds
of games and utilities or download them as shareware. We exchange useful
programs with colleagues and friends when we have tried only a fraction of
each program’s features.

Then, we download updates and install patches, trusting that the vendors
are sure that the changes are correct and complete. We blindly hope that the
latest change to each program keeps it compatible with all of the rest of the
programs on our system. We rely on much software that we do not understand
and do not know very well at all.

I refer to a lot more than our desktop or laptop personal computers. The
concept of ubiquitous computing, or “software everywhere,” is rapidly
putting software control and interconnection in devices throughout our envi-
ronment. The average automobile now has more lines of software code in its
engine controls than were required to land the Apollo astronauts on the Moon.

Today’s software has become so complex and interconnected that the devel-
oper often does not know all the features and repercussions of what has been
created in an application. It is frequently too expensive and time-consuming to
test all control paths of a program and all groupings of user options. Now, with
multiple architecture layers and an explosion of networked platforms that the
software will run on or interact with, it has become literally impossible for all

Foreword

vii

01_574817 ffirs.qxd 3/16/05 8:37 PM Page vii

combinations to be examined and tested. Like the problems of detecting drug
interactions in advance, many software systems are fielded with issues
unknown and unpredictable.

Reverse engineering is a critical set of techniques and tools for understand-
ing what software is really all about. Formally, it is “the process of analyzing a
subject system to identify the system’s components and their interrelation-
ships and to create representations of the system in another form or at a higher
level of abstraction”(IEEE 1990). This allows us to visualize the software’s
structure, its ways of operation, and the features that drive its behavior. The
techniques of analysis, and the application of automated tools for software
examination, give us a reasonable way to comprehend the complexity of the
software and to uncover its truth.

Reverse engineering has been with us a long time. The conceptual Revers-
ing process occurs every time someone looks at someone else’s code. But, it
also occurs when a developer looks at his or her own code several days after it
was written. Reverse engineering is a discovery process. When we take a fresh
look at code, whether developed by ourselves or others, we examine and we
learn and we see things we may not expect.

While it had been the topic of some sessions at conferences and computer
user groups, reverse engineering of software came of age in 1990. Recognition
in the engineering community came through the publication of a taxonomy on
reverse engineering and design recovery concepts in IEEE Software magazine.
Since then, there has been a broad and growing body of research on Reversing
techniques, software visualization, program understanding, data reverse engi-
neering, software analysis, and related tools and approaches. Research
forums, such as the annual international Working Conference on Reverse
Engineering (WCRE), explore, amplify, and expand the value of available tech-
niques. There is now increasing interest in binary Reversing, the principal
focus of this book, to support platform migration, interoperability, malware
detection, and problem determination.

As a management and information technology consultant, I have often been
asked: “How can you possibly condone reverse engineering?” This is soon fol-
lowed by: “You’ve developed and sold software. Don’t you want others to
respect and protect your copyrights and intellectual property?” This discus-
sion usually starts from the negative connotation of the term reverse engineer-
ing, particularly in software license agreements. However, reverse engineering
technologies are of value in many ways to producers and consumers of soft-
ware along the supply chain.

A stethoscope could be used by a burglar to listen to the lock mechanism of
a safe as the tumblers fall in place. But the same stethoscope could be used
by your family doctor to detect breathing or heart problems. Or, it could
be used by a computer technician to listen closely to the operating sounds
of a sealed disk drive to diagnose a problem without exposing the drive to

viii Foreword

01_574817 ffirs.qxd 3/16/05 8:37 PM Page viii

potentially-damaging dust and pollen. The tool is not inherently good or bad.
The issue is the use to which the tool is put.

In the early 1980s, IBM decided that it would no longer release to its cus-
tomers the source code for its mainframe computer operating systems. Main-
frame customers had always relied on the source code for reference in problem
solving and to tailor, modify, and extend the IBM operating system products. I
still have my button from the IBM user group Share that reads: “If SOURCE is
outlawed, only outlaws will have SOURCE,” a word play on a famous argu-
ment by opponents of gun-control laws. Applied to current software, this
points out that hackers and developers of malicious code know many tech-
niques for deciphering others’ software. It is useful for the good guys to know
these techniques, too.

Reverse engineering is particularly useful in modern software analysis for a
wide variety of purposes:

■■ Finding malicious code. Many virus and malware detection techniques
use reverse engineering to understand how abhorrent code is struc-
tured and functions. Through Reversing, recognizable patterns emerge
that can be used as signatures to drive economical detectors and code
scanners.

■■ Discovering unexpected flaws and faults. Even the most well-designed
system can have holes that result from the nature of our “forward engi-
neering” development techniques. Reverse engineering can help iden-
tify flaws and faults before they become mission-critical software
failures.

■■ Finding the use of others’ code. In supporting the cognizant use of
intellectual property, it is important to understand where protected
code or techniques are used in applications. Reverse engineering tech-
niques can be used to detect the presence or absence of software ele-
ments of concern.

■■ Finding the use of shareware and open source code where it was not
intended to be used. In the opposite of the infringing code concern, if a
product is intended for security or proprietary use, the presence of pub-
licly available code can be of concern. Reverse engineering enables the
detection of code replication issues.

■■ Learning from others’ products of a different domain or purpose.
Reverse engineering techniques can enable the study of advanced soft-
ware approaches and allow new students to explore the products of
masters. This can be a very useful way to learn and to build on a grow-
ing body of code knowledge. Many Web sites have been built by seeing
what other Web sites have done. Many Web developers learned HTML
and Web programming techniques by viewing the source of other sites.

Foreword ix

01_574817 ffirs.qxd 3/16/05 8:37 PM Page ix

■■ Discovering features or opportunities that the original developers did
not realize. Code complexity can foster new innovation. Existing tech-
niques can be reused in new contexts. Reverse engineering can lead to
new discoveries about software and new opportunities for innovation.

In the application of computer-aided software engineering (CASE)
approaches and automated code generation, in both new system development
and software maintenance, I have long contended that any system we build
should be immediately run through a suite of reverse engineering tools. The
holes and issues that are uncovered would save users, customers, and support
staff many hours of effort in problem detection and solution. The savings
industry-wide from better code understanding could be enormous.

I’ve been involved in research and applications of software reverse engi-
neering for 30 years, on mainframes, mid-range systems and PCs, from pro-
gram language statements, binary modules, data files, and job control streams.
In that time, I have heard many approaches explained and seen many tech-
niques tried. Even with that background, I have learned much from this book
and its perspective on reversing techniques. I am sure that you will too.

Elliot Chikofsky
Engineering Management and Integration (Herndon, VA)
Chair, Reengineering Forum
Executive Secretary, IEEE Technical Council on Software Engineering

x Foreword

01_574817 ffirs.qxd 3/16/05 8:37 PM Page x

First I would like to thank my beloved Odelya (“Oosa”) Buganim for her con-
stant support and encouragement—I couldn’t have done it without you!

I would like to thank my family for their patience and support: my grand-
parents, Yosef and Pnina Vertzberger, my parents, Avraham and Nava Eilam-
Amzallag, and my brother, Yaron Eilam.

I’d like to thank my editors at Wiley: My executive editor, Bob Elliott, for
giving me the opportunity to write this book and to work with him, and my
development editor, Eileen Bien Calabro, for being patient and forgiving with
a first-time author whose understanding of the word deadline comes from
years of working in the software business.

Many talented people have invested a lot of time and energy in reviewing
this book and helping me make sure that it is accurate and enjoyable to read.
I’d like to give special thanks to David Sleeper for spending all of those long
hours reviewing the entire manuscript, and to Alex Ben-Ari for all of his use-
ful input and valuable insights. Thanks to George E. Kalb for his review of Part
III, to Mike Van Emmerik for his review of the decompilation chapter, and to
Dr. Roger Kingsley for his detailed review and input. Finally, I’d like to
acknowledge Peter S. Canelias who reviewed the legal aspects of this book.

This book would probably never exist if it wasn’t for Avner (“Sabi”)
Zangvil, who originally suggested the idea of writing a book about reverse
engineering and encouraged me to actually write it.

I’d like to acknowledge my good friends, Adar Cohen and Ori Weitz for
their friendship and support.

Last, but not least, this book would not have been the same without Bookey,
our charming cat who rested and purred on my lap for many hours while I
was writing this book.

Acknowledgments

xi

01_574817 ffirs.qxd 3/16/05 8:37 PM Page xi

01_574817 ffirs.qxd 3/16/05 8:37 PM Page xii

This page intentionally left blank

Foreword vii

Acknowledgments xi

Introduction xxiii

Part I Reversing 101 1

Chapter 1 Foundations 3
What Is Reverse Engineering? 3
Software Reverse Engineering: Reversing 4
Reversing Applications 4

Security-Related Reversing 5
Malicious Software 5
Reversing Cryptographic Algorithms 6
Digital Rights Management 7
Auditing Program Binaries 7

Reversing in Software Development 8
Achieving Interoperability with Proprietary Software 8
Developing Competing Software 8
Evaluating Software Quality and Robustness 9

Low-Level Software 9
Assembly Language 10
Compilers 11
Virtual Machines and Bytecodes 12
Operating Systems 13

Contents

xiii

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xiii

The Reversing Process 13
System-Level Reversing 14
Code-Level Reversing 14

The Tools 14
System-Monitoring Tools 15
Disassemblers 15
Debuggers 15
Decompilers 16

Is Reversing Legal? 17
Interoperability 17
Competition 18
Copyright Law 19
Trade Secrets and Patents 20
The Digital Millenium Copyright Act 20
DMCA Cases 22
License Agreement Considerations 23

Code Samples & Tools 23
Conclusion 23

Chapter 2 Low-Level Software 25
High-Level Perspectives 26

Program Structure 26
Modules 28
Common Code Constructs 28

Data Management 29
Variables 30
User-Defined Data Structures 30
Lists 31

Control Flow 32
High-Level Languages 33

C 34
C++ 35
Java 36
C# 36

Low-Level Perspectives 37
Low-Level Data Management 37

Registers 39
The Stack 40
Heaps 42
Executable Data Sections 43

Control Flow 43
Assembly Language 101 44

Registers 44
Flags 46
Instruction Format 47
Basic Instructions 48

Moving Data 49
Arithmetic 49
Comparing Operands 50

xiv Contents

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xiv

Conditional Branches 51
Function Calls 51

Examples 52
A Primer on Compilers and Compilation 53

Defining a Compiler 54
Compiler Architecture 55

Front End 55
Intermediate Representations 55
Optimizer 56
Back End 57

Listing Files 58
Specific Compilers 59

Execution Environments 60
Software Execution Environments (Virtual Machines) 60

Bytecodes 61
Interpreters 61
Just-in-Time Compilers 62
Reversing Strategies 62

Hardware Execution Environments in Modern Processors 63
Intel NetBurst 65
µops (Micro-Ops) 65
Pipelines 65
Branch Prediction 67

Conclusion 68

Chapter 3 Windows Fundamentals 69
Components and Basic Architecture 70

Brief History 70
Features 70
Supported Hardware 71

Memory Management 71
Virtual Memory and Paging 72

Paging 73
Page Faults 73

Working Sets 74
Kernel Memory and User Memory 74
The Kernel Memory Space 75
Section Objects 77
VAD Trees 78
User-Mode Allocations 78
Memory Management APIs 79

Objects and Handles 80
Named objects 81

Processes and Threads 83
Processes 84
Threads 84
Context Switching 85
Synchronization Objects 86
Process Initialization Sequence 87

Contents xv

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xv

Application Programming Interfaces 88
The Win32 API 88
The Native API 90
System Calling Mechanism 91

Executable Formats 93
Basic Concepts 93
Image Sections 95
Section Alignment 95
Dynamically Linked Libraries 96
Headers 97
Imports and Exports 99
Directories 99

Input and Output 103
The I/O System 103
The Win32 Subsystem 104

Object Management 105
Structured Exception Handling 105
Conclusion 107

Chapter 4 Reversing Tools 109
Different Reversing Approaches 110

Offline Code Analysis (Dead-Listing) 110
Live Code Analysis 110

Disassemblers 110
IDA Pro 112

ILDasm 115
Debuggers 116

User-Mode Debuggers 118
OllyDbg 118
User Debugging in WinDbg 119
IDA Pro 121
PEBrowse Professional Interactive 122

Kernel-Mode Debuggers 122
Kernel Debugging in WinDbg 123
Numega SoftICE 124
Kernel Debugging on Virtual Machines 127

Decompilers 129
System-Monitoring Tools 129
Patching Tools 131

Hex Workshop 131
Miscellaneous Reversing Tools 133

Executable-Dumping Tools 133
DUMPBIN 133
PEView 137
PEBrowse Professional 137

Conclusion 138

xvi Contents

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xvi

Part II Applied Reversing 139

Chapter 5 Beyond the Documentation 141
Reversing and Interoperability 142
Laying the Ground Rules 142
Locating Undocumented APIs 143

What Are We Looking For? 144
Case Study: The Generic Table API in NTDLL.DLL 145

RtlInitializeGenericTable 146
RtlNumberGenericTableElements 151
RtlIsGenericTableEmpty 152
RtlGetElementGenericTable 153

Setup and Initialization 155
Logic and Structure 159
Search Loop 1 161
Search Loop 2 163
Search Loop 3 164
Search Loop 4 165
Reconstructing the Source Code 165

RtlInsertElementGenericTable 168
RtlLocateNodeGenericTable 170
RtlRealInsertElementWorker 178
Splay Trees 187

RtlLookupElementGenericTable 188
RtlDeleteElementGenericTable 193
Putting the Pieces Together 194

Conclusion 196

Chapter 6 Deciphering File Formats 199
Cryptex 200
Using Cryptex 201
Reversing Cryptex 202
The Password Verification Process 207

Catching the “Bad Password” Message 207
The Password Transformation Algorithm 210
Hashing the Password 213

The Directory Layout 218
Analyzing the Directory Processing Code 218
Analyzing a File Entry 223

Dumping the Directory Layout 227
The File Extraction Process 228

Scanning the File List 234
Decrypting the File 235
The Floating-Point Sequence 236
The Decryption Loop 238
Verifying the Hash Value 239

The Big Picture 239
Digging Deeper 241
Conclusion 242

Contents xvii

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xvii

Chapter 7 Auditing Program Binaries 243
Defining the Problem 243
Vulnerabilities 245

Stack Overflows 245
A Simple Stack Vulnerability 247
Intrinsic Implementations 249
Stack Checking 250
Nonexecutable Memory 254

Heap Overflows 255
String Filters 256
Integer Overflows 256

Arithmetic Operations on User-Supplied Integers 258
Type Conversion Errors 260

Case-Study: The IIS Indexing Service Vulnerability 262
CVariableSet::AddExtensionControlBlock 263
DecodeURLEscapes 267

Conclusion 271

Chapter 8 Reversing Malware 273
Types of Malware 274

Viruses 274
Worms 274
Trojan Horses 275
Backdoors 276
Mobile Code 276
Adware/Spyware 276

Sticky Software 277
Future Malware 278

Information-Stealing Worms 278
BIOS/Firmware Malware 279

Uses of Malware 280
Malware Vulnerability 281
Polymorphism 282
Metamorphism 283
Establishing a Secure Environment 285
The Backdoor.Hacarmy.D 285

Unpacking the Executable 286
Initial Impressions 290
The Initial Installation 291
Initializing Communications 294
Connecting to the Server 296
Joining the Channel 298
Communicating with the Backdoor 299
Running SOCKS4 Servers 303
Clearing the Crime Scene 303

The Backdoor.Hacarmy.D: A Command Reference 304
Conclusion 306

xviii Contents

02_574817 ftoc.qxd 3/22/05 4:41 PM Page xviii

Part III Cracking 307

Chapter 9 Piracy and Copy Protection 309
Copyrights in the New World 309
The Social Aspect 310
Software Piracy 310

Defining the Problem 311
Class Breaks 312
Requirements 313
The Theoretically Uncrackable Model 314

Types of Protection 314
Media-Based Protections 314
Serial Numbers 315
Challenge Response and Online Activations 315
Hardware-Based Protections 316
Software as a Service 317

Advanced Protection Concepts 318
Crypto-Processors 318

Digital Rights Management 319
DRM Models 320

The Windows Media Rights Manager 321
Secure Audio Path 321

Watermarking 321
Trusted Computing 322
Attacking Copy Protection Technologies 324
Conclusion 324

Chapter 10 Antireversing Techniques 327
Why Antireversing? 327
Basic Approaches to Antireversing 328
Eliminating Symbolic Information 329
Code Encryption 330
Active Antidebugger Techniques 331

Debugger Basics 331
The IsDebuggerPresent API 332
SystemKernelDebuggerInformation 333
Detecting SoftICE Using the Single-Step Interrupt 334
The Trap Flag 335
Code Checksums 335

Confusing Disassemblers 336
Linear Sweep Disassemblers 337
Recursive Traversal Disassemblers 338
Applications 343

Code Obfuscation 344
Control Flow Transformations 346

Opaque Predicates 346
Confusing Decompilers 348
Table Interpretation 348

Contents xix

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xix

Inlining and Outlining 353
Interleaving Code 354
Ordering Transformations 355

Data Transformations 355
Modifying Variable Encoding 355
Restructuring Arrays 356

Conclusion 356

Chapter 11 Breaking Protections 357
Patching 358
Keygenning 364
Ripping Key-Generation Algorithms 365
Advanced Cracking: Defender 370

Reversing Defender’s Initialization Routine 377
Analyzing the Decrypted Code 387
SoftICE’s Disappearance 396
Reversing the Secondary Thread 396
Defeating the “Killer” Thread 399
Loading KERNEL32.DLL 400
Reencrypting the Function 401
Back at the Entry Point 402
Parsing the Program Parameters 404
Processing the Username 406
Validating User Information 407
Unlocking the Code 409
Brute-Forcing Your Way through Defender 409

Protection Technologies in Defender 415
Localized Function-Level Encryption 415

Relatively Strong Cipher Block Chaining 415
Reencrypting 416

Obfuscated Application/Operating System Interface 416
Processor Time-Stamp Verification Thread 417
Runtime Generation of Decryption Keys 418

Interdependent Keys 418
User-Input-Based Decryption Keys 419

Heavy Inlining 419
Conclusion 419

Part IV Beyond Disassembly 421

Chapter 12 Reversing .NET 423
Ground Rules 424
.NET Basics 426

Managed Code 426
.NET Programming Languages 428
Common Type System (CTS) 428

Intermediate Language (IL) 429
The Evaluation Stack 430
Activation Records 430

xx Contents

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xx

IL Instructions 430
IL Code Samples 433

Counting Items 433
A Linked List Sample 436

Decompilers 443
Obfuscators 444

Renaming Symbols 444
Control Flow Obfuscation 444
Breaking Decompilation and Disassembly 444

Reversing Obfuscated Code 445
XenoCode Obfuscator 446
DotFuscator by Preemptive Solutions 448
Remotesoft Obfuscator and Linker 451
Remotesoft Protector 452
Precompiled Assemblies 453
Encrypted Assemblies 453

Conclusion 455

Chapter 13 Decompilation 457
Native Code Decompilation: An Unsolvable Problem? 457
Typical Decompiler Architecture 459
Intermediate Representations 459

Expressions and Expression Trees 461
Control Flow Graphs 462

The Front End 463
Semantic Analysis 463
Generating Control Flow Graphs 464

Code Analysis 466
Data-Flow Analysis 466

Single Static Assignment (SSA) 467
Data Propagation 468
Register Variable Identification 470
Data Type Propagation 471

Type Analysis 472
Primitive Data Types 472
Complex Data Types 473

Control Flow Analysis 475
Finding Library Functions 475

The Back End 476
Real-World IA-32 Decompilation 477
Conclusion 477

Appendix A Deciphering Code Structures 479

Appendix B Understanding Compiled Arithmetic 519

Appendix C Deciphering Program Data 537

Index 561

Contents xxi

02_574817 ftoc.qxd 3/16/05 8:35 PM Page xxi

