
Structure and Interpretation 
of Computer Programs 

second edition 

Harold Abelson and Gerald Jay Sussman 

with Julie Sussman 

foreword by Alan J. Pedis 

The MIT Press 

Cambridge, Massachusetts London, England 

The McGraw-Hill Companies, Inc. 

New York St. Louis San Francisco Montreal Toronto 



This book is one of a series of texts written by faculty of the Electrical Engineering and 
Computer Science Department at the Massachusetts Institute of Technology. It was edited 
and produced by The MIT Press under a joint production-distribution arrangement with 
The McGraw-Hill Companies, Inc. 

Ordering Information: 

North America 
Text orders should be addressed to: 
The McGraw-Hill Companies 
Order Services 
P.O. Box 545 
Blacklick, OH 43004-0545 
For toll-free customer service, call 1-800-338-3987 

All other orders should be addressed to: 
The MIT Press 
55 Hayward Street 
Cambridge, MA 02142 
or at the toll-free number 1-800-356-0343 

Outside North America 
All orders should be addressed to The MIT Press or its local distributor. 

©1996 by The Massachusetts Institute of Technology 

Second edition 

All rights reserved. No part of this book may be reproduced in any form or by any 
electronic or mechanical means (including photocopying, recording, or information 
storage and retrieval) without permission in writing from the publisher. 

This book was set by the authors using the J5f}3X typesetting system and was printed and 
bound in the United States of America. 

Library of Congress Cataloging-in-Publication Data 
Abelson, Harold 

Structure and interpretation of computer programs / Harold Abelson 
and Gerald Jay Sussman, with Julie Sussman.-2nd ed. 

p. cm.-(Electrical engineering and computer science 
series) 

Includes bibliographical references and index. 

ISBN 0-262-01153-0; ISBN-13 978-0-262-01153-2 (MIT Press he) 

ISBN 0-262-51087-1; ISBN-13 978-0-262-51087-5 (MIT Press pbk) 
ISBN 0-07-000484-6; ISBN-13 978-0-07-000484-9 (McGraw Hill he) 

1. Electronic digital computers-Programming. 2. LISP (Computer 
program language) I. Sussman, Gerald Jay. II. Sussman, Julie. 
III. Title. IV. Series: MIT electrical engineering and computer 
science series. 
QA76.6.A255 
005.13'3-dc20 

201918171615 

1996 
96-17756 



This book is dedicated, in respect and admiration, to the spirit that lives 

in the computer. 

"I think that it's extraordinarily important that we in computer science 

keep fun in computing. When it started out, it was an awful lot of fun. 

Of course, the paying customers got shafted every now and then, and 

after a while we began to take their complaints seriously. We began to 

feel as if we really were responsible for the successful, error-free perfect 

use of these machines. 1 don't think we are. 1 think we're responsible 

for stretching them, setting them off in new directions, and keeping fun 

in the house. 1 hope the field of computer science never loses its sense 

of fun. Above all, 1 hope we don't become missionaries. Don't feel as if 

you're Bible salesmen. The world has too many of those already. What 

you know about computing other people will learn. Don't feel as if the 

key to successful computing is only in your hands. What's in your hands, 

I think and hope, is intelligence: the ability to see the machine as more 

than when you were first led up to it, that you can make it more." 

Alan J. Perlis (April 1, 1922-February 7, 1990) 



Contents 

Contents vii 

Foreword xi 

Preface to the Second Edition xv 

Preface to the First Edition xvii 

Acknowledgments xxi 

1 Building Abstractions with Procedures 1 

1.1 The Elements of Programming 4 

1.1.1 Expressions 5 

1.1.2 Naming and the Environment 7 

1.1.3 Evaluating Combinations 9 

1.1.4 Compound Procedures 11 

1.1.5 The Substitution Model for Procedure Application 13 

1.1.6 Conditional Expressions and Predicates 17 

1.1.7 Example: Square Roots by Newton's Method 21 

1.1.8 Procedures as Black-Box Abstractions 26 

1.2 Procedures and the Processes They Generate 31 

1.2.1 Linear Recursion and Iteration 32 

1.2.2 Tree Recursion 37 

1.2.3 Orders of Growth 42 

1.2.4 Exponentiation 44 

1.2.5 Greatest Common Divisors 48 

1.2.6 Example: Testing for Primality 50 

1.3 Formulating Abstractions with Higher-Order Procedures 56 

1.3.1 Procedures as Arguments 57 

1.3.2 Constructing Procedures Using Lambda 62 

1.3.3 Procedures as General Methods 66 

1.3.4 Procedures as Returned Values 72 



viii Contents 

2 Building Abstractions with Data 79 

2.1 Introduction to Data Abstraction 83 

2.1.1 Example: Arithmetic Operations for Rational Numbers 83 

2.1.2 Abstraction Barriers 87 

2.1.3 What Is Meant by Data? 90 

2.1.4 Extended Exercise: Interval Arithmetic 93 

2.2 Hierarchical Data and the Closure Property 97 

2.2.1 Representing Sequences 99 

2.2.2 Hierarchical Structures 107 

2.2.3 Sequences as Conventional Interfaces 113 

2.2.4 Example: A Picture Language 126 

2.3 Symbolic Data 142 

2.3.1 Quotation 142 

2.3.2 Example: Symbolic Differentiation 145 

2.3.3 Example: Representing Sets 151 

2.3.4 Example: Huffman Encoding Trees 161 

2.4 Multiple Representations for Abstract Data 169 

2.4.1 Representations for Complex Numbers 171 

2.4.2 Tagged data 175 

2.4.3 Data-Directed Programming and Additivity 179 

2.5 Systems with Generic Operations 187 

2.5.1 Generic Arithmetic Operations 189 

2.5.2 Combining Data of Different Types 193 

2.5.3 Example: Symbolic Algebra 202 

3 Modularity, Objects, and State 217 

3.1 Assignment and Local State 218 

3.1.1 Local State Variables 219 

3.1.2 The Benefits of Introducing Assignment 225 

3.1.3 The Costs of Introducing Assignment 229 

3.2 The Environment Model of Evaluation 236 

3.2.1 The Rules for Evaluation 238 

3.2.2 Applying Simple Procedures 241 

3.2.3 Frames as the Repository of Local State 244 

3.2.4 Internal Definitions 249 

3.3 Modeling with Mutable Data 251 

3.3.1 Mutable List Structure 252 



Contents ix 

3.3.2 Representing Queues 261 

3.3.3 Representing Tables 266 

3.3.4 A Simulator for Digital Circuits 273 

3.3.5 Propagation of Constraints 285 

3.4 Concurrency: Time Is of the Essence 297 

3.4.1 The Nature of Time in Concurrent Systems 298 

3.4.2 Mechanisms for Controlling Concurrency 303 

3.5 Streams 316 

3.5.1 Streams Are Delayed Lists 317 

3.5.2 Infinite Streams 326 

3.5.3 Exploiting the Stream Paradigm 334 

3.5.4 Streams and Delayed Evaluation 346 

3.5.$ Modularity of Functional Programs and Modularity of 

Objects 352 

4 Metalinguistic Abstraction 359 

4.1 The Metacircular Evaluator 362 

4.1.1 The Core of the Evaluator 364 

4.1.2 Representing Expressions 368 

4.1.3 Evaluator Data Structures 376 

4.1.4 Running the Evaluator as a Program 381 

4.1.5 Data as Programs 384 

4.1.6 Internal Definitions 388 

4.1.7 Separating Syntactic Analysis from Execution 393 

4.2 Variations on a Scheme-Lazy Evaluation 398 

4.2.1 Normal Order and Applicative Order 399 

4.2.2 An Interpreter with Lazy Evaluation 401 

4.2.3 Streams as Lazy Lists 409 

4.3 Variations on a Scheme-Nondeterministic Computing 412 

4.3.1 Amb and Search 414 

4.3.2 Examples of Nondeterministic Programs 418 

4.3.3 Implementing the Amb Evaluator 426 

4.4 Logic Programming 438 

4.4.1 Deductive Information Retrieval 441 

4.4.2 How the Query System Works 453 

4.4.3 Is Logic Programming Mathematical Logic? 462 

4.4.4 Implementing the Query System 468 



x Contents 

5 Computing with Register Machines 491 

5.1 Designing Register Machines 492 

5.1.1 A Language for Describing Register Machines 494 
5.1.2 Abstraction in Machine Design 499 
5.1.3 Subroutines 502 

5.1.4 Using a Stack to Implement Recursion 506 

5.1.5 Instruction Summary 512 

5.2 A Register-Machine Simulator 513 

5.2.1 The Machine Model 515 
5.2.2 The Assembler 520 
5.2.3 Generating Execution Procedures for Instructions 523 
5.2.4 Monitoring Machine Performance 530 

5.3 Storage Allocation and Garbage Collection 533 
5.3.1 Memory as Vectors 534 

5.3.2 Maintaining the Illusion of Infinite Memory 540 

5.4 The Explicit-Control Evaluator 547 
5.4.1 The Core of the Explicit-Control Evaluator 549 
5.4.2 Sequence Evaluation and Tail Recursion 555 
5.4.3 Conditionals, Assignments, and Definitions 558 
5.4.4 Running the Evaluator 560 

5.5 Compilation 566 
5.5.1 Structure of the Compiler 569 

5.5.2 Compiling Expressions 574 
5.5.3 Compiling Combinations 581 
5.5.4 Combining Instruction Sequences 587 
5.5.5 An Example of Compiled Code 591 
5.5.6 Lexical Addressing 600 
5.5.7 Interfacing Compiled Code to the Evaluator 603 

References 611 

List of Exercises 619 

Index 621 




