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This book is dedicated, in respect and admiration, to the spirit that lives 

in the computer. 

"I think that it's extraordinarily important that we in computer science 

keep fun in computing. When it started out, it was an awful lot of fun. 

Of course, the paying customers got shafted every now and then, and 

after a while we began to take their complaints seriously. We began to 

feel as if we really were responsible for the successful, error-free perfect 

use of these machines. 1 don't think we are. 1 think we're responsible 

for stretching them, setting them off in new directions, and keeping fun 

in the house. 1 hope the field of computer science never loses its sense 

of fun. Above all, 1 hope we don't become missionaries. Don't feel as if 

you're Bible salesmen. The world has too many of those already. What 

you know about computing other people will learn. Don't feel as if the 

key to successful computing is only in your hands. What's in your hands, 

I think and hope, is intelligence: the ability to see the machine as more 

than when you were first led up to it, that you can make it more." 

Alan J. Perlis (April 1, 1922-February 7, 1990) 
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