
Unit Testing:
Principles, Practices,

and Patterns
VLADIMIR KHORIKOV

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisitions editor: Mike Stephens
20 Baldwin Road Development editor: Marina Michaels
PO Box 761 Technical development editor: Sam Zaydel
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Production editor: Anthony Calcara
Copy editor: Tiffany Taylor

ESL copyeditor: Frances Buran
Proofreader: Keri Hales

Technical proofreader: Alessandro Campeis
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296277
Printed in the United States of America

www.manning.com

v

brief contents
PART 1 THE BIGGER PICTURE ..1

1 ■ The goal of unit testing 3

2 ■ What is a unit test? 20

3 ■ The anatomy of a unit test 41

PART 2 MAKING YOUR TESTS WORK FOR YOU...........................65
4 ■ The four pillars of a good unit test 67

5 ■ Mocks and test fragility 92

6 ■ Styles of unit testing 119

7 ■ Refactoring toward valuable unit tests 151

PART 3 INTEGRATION TESTING..183
8 ■ Why integration testing? 185

9 ■ Mocking best practices 216

10 ■ Testing the database 229

PART 4 UNIT TESTING ANTI-PATTERNS...................................257
11 ■ Unit testing anti-patterns 259

vii

contents
preface xiv
acknowledgments xv
about this book xvi
about the author xix
about the cover illustration xx

PART 1 THE BIGGER PICTURE ..1

1 The goal of unit testing 3
1.1 The current state of unit testing 4
1.2 The goal of unit testing 5

What makes a good or bad test? 7

1.3 Using coverage metrics to measure test suite quality 8
Understanding the code coverage metric 9 ■ Understanding the
branch coverage metric 10 ■ Problems with coverage metrics 12
Aiming at a particular coverage number 15

1.4 What makes a successful test suite? 15
It’s integrated into the development cycle 16 ■ It targets only the
most important parts of your code base 16 ■ It provides maximum
value with minimum maintenance costs 17

1.5 What you will learn in this book 17

CONTENTSviii

2 What is a unit test? 20
2.1 The definition of “unit test” 21

The isolation issue: The London take 21 ■ The isolation issue:
The classical take 27

2.2 The classical and London schools of unit testing 30
How the classical and London schools handle dependencies 30

2.3 Contrasting the classical and London schools
of unit testing 34
Unit testing one class at a time 34 ■ Unit testing a large graph of
interconnected classes 35 ■ Revealing the precise bug location 36
Other differences between the classical and London schools 36

2.4 Integration tests in the two schools 37
End-to-end tests are a subset of integration tests 38

3 The anatomy of a unit test 41

3.1 How to structure a unit test 42
Using the AAA pattern 42 ■ Avoid multiple arrange, act,
and assert sections 43 ■ Avoid if statements in tests 44
How large should each section be? 45 ■ How many assertions
should the assert section hold? 47 ■ What about the teardown
phase? 47 ■ Differentiating the system under test 47
Dropping the arrange, act, and assert comments from tests 48

3.2 Exploring the xUnit testing framework 49
3.3 Reusing test fixtures between tests 50

High coupling between tests is an anti-pattern 52 ■ The use of
constructors in tests diminishes test readability 52 ■ A better way
to reuse test fixtures 52

3.4 Naming a unit test 54
Unit test naming guidelines 56 ■ Example: Renaming a test
toward the guidelines 56

3.5 Refactoring to parameterized tests 58
Generating data for parameterized tests 60

3.6 Using an assertion library to further improve
test readability 62

CONTENTS ix

PART 2 MAKING YOUR TESTS WORK FOR YOU.................65

4 The four pillars of a good unit test 67

4.1 Diving into the four pillars of a good unit test 68
The first pillar: Protection against regressions 68 ■ The second
pillar: Resistance to refactoring 69 ■ What causes false
positives? 71 ■ Aim at the end result instead of
implementation details 74

4.2 The intrinsic connection between the first
two attributes 76
Maximizing test accuracy 76 ■ The importance of false positives
and false negatives: The dynamics 78

4.3 The third and fourth pillars: Fast feedback
and maintainability 79

4.4 In search of an ideal test 80
Is it possible to create an ideal test? 81 ■ Extreme case #1:
End-to-end tests 81 ■ Extreme case #2: Trivial tests 82
Extreme case #3: Brittle tests 83 ■ In search of an ideal test:
The results 84

4.5 Exploring well-known test automation concepts 87
Breaking down the Test Pyramid 87 ■ Choosing between black-box
and white-box testing 89

5 Mocks and test fragility 92

5.1 Differentiating mocks from stubs 93
The types of test doubles 93 ■ Mock (the tool) vs. mock (the
test double) 94 ■ Don’t assert interactions with stubs 96
Using mocks and stubs together 97 ■ How mocks and stubs
relate to commands and queries 97

5.2 Observable behavior vs. implementation details 99
Observable behavior is not the same as a public API 99 ■ Leaking
implementation details: An example with an operation 100
Well-designed API and encapsulation 103 ■ Leaking
implementation details: An example with state 104

5.3 The relationship between mocks and test fragility 106
Defining hexagonal architecture 106 ■ Intra-system vs. inter-
system communications 110 ■ Intra-system vs. inter-system
communications: An example 111

CONTENTSx

5.4 The classical vs. London schools of unit testing,
revisited 114
Not all out-of-process dependencies should be mocked out 115
Using mocks to verify behavior 116

6 Styles of unit testing 119
6.1 The three styles of unit testing 120

Defining the output-based style 120 ■ Defining the state-based
style 121 ■ Defining the communication-based style 122

6.2 Comparing the three styles of unit testing 123
Comparing the styles using the metrics of protection against
regressions and feedback speed 124 ■ Comparing the styles using
the metric of resistance to refactoring 124 ■ Comparing the styles
using the metric of maintainability 125 ■ Comparing the styles:
The results 127

6.3 Understanding functional architecture 128
What is functional programming? 128 ■ What is functional
architecture? 132 ■ Comparing functional and hexagonal
architectures 133

6.4 Transitioning to functional architecture and output-based
testing 135
Introducing an audit system 135 ■ Using mocks to decouple tests
from the filesystem 137 ■ Refactoring toward functional
architecture 140 ■ Looking forward to further developments 146

6.5 Understanding the drawbacks of functional architecture 146
Applicability of functional architecture 147 ■ Performance
drawbacks 148 ■ Increase in the code base size 149

7 Refactoring toward valuable unit tests 151
7.1 Identifying the code to refactor 152

The four types of code 152 ■ Using the Humble Object pattern to
split overcomplicated code 155

7.2 Refactoring toward valuable unit tests 158
Introducing a customer management system 158 ■ Take 1:
Making implicit dependencies explicit 160 ■ Take 2: Introducing
an application services layer 160 ■ Take 3: Removing complexity
from the application service 163 ■ Take 4: Introducing a new
Company class 164

CONTENTS xi

7.3 Analysis of optimal unit test coverage 167
Testing the domain layer and utility code 167 ■ Testing the code
from the other three quadrants 168 ■ Should you test
preconditions? 169

7.4 Handling conditional logic in controllers 169
Using the CanExecute/Execute pattern 172 ■ Using domain
events to track changes in the domain model 175

7.5 Conclusion 178

PART 3 INTEGRATION TESTING....................................183

8 Why integration testing? 185
8.1 What is an integration test? 186

The role of integration tests 186 ■ The Test Pyramid
revisited 187 ■ Integration testing vs. failing fast 188

8.2 Which out-of-process dependencies to test directly 190
The two types of out-of-process dependencies 190 ■ Working with
both managed and unmanaged dependencies 191 ■ What if you
can’t use a real database in integration tests? 192

8.3 Integration testing: An example 193
What scenarios to test? 194 ■ Categorizing the database and
the message bus 195 ■ What about end-to-end testing? 195
Integration testing: The first try 196

8.4 Using interfaces to abstract dependencies 197
Interfaces and loose coupling 198 ■ Why use interfaces for
out-of-process dependencies? 199 ■ Using interfaces for in-process
dependencies 199

8.5 Integration testing best practices 200
Making domain model boundaries explicit 200 ■ Reducing the
number of layers 200 ■ Eliminating circular dependencies 202
Using multiple act sections in a test 204

8.6 How to test logging functionality 205
Should you test logging? 205 ■ How should you test
logging? 207 ■ How much logging is enough? 212
How do you pass around logger instances? 212

8.7 Conclusion 213

CONTENTSxii

9 Mocking best practices 216
9.1 Maximizing mocks’ value 217

Verifying interactions at the system edges 219 ■ Replacing mocks
with spies 222 ■ What about IDomainLogger? 224

9.2 Mocking best practices 225
Mocks are for integration tests only 225 ■ Not just one mock per
test 225 ■ Verifying the number of calls 226 ■ Only mock types
that you own 227

10 Testing the database 229
10.1 Prerequisites for testing the database 230

Keeping the database in the source control system 230 ■ Reference
data is part of the database schema 231 ■ Separate instance for
every developer 232 ■ State-based vs. migration-based database
delivery 232

10.2 Database transaction management 234
Managing database transactions in production code 235 ■ Managing
database transactions in integration tests 242

10.3 Test data life cycle 243
Parallel vs. sequential test execution 243 ■ Clearing data between
test runs 244 ■ Avoid in-memory databases 246

10.4 Reusing code in test sections 246
Reusing code in arrange sections 246 ■ Reusing code in
act sections 249 ■ Reusing code in assert sections 250
Does the test create too many database transactions? 251

10.5 Common database testing questions 252
Should you test reads? 252 ■ Should you test repositories? 253

10.6 Conclusion 254

PART 3 UNIT TESTING ANTI-PATTERNS.........................257

11 Unit testing anti-patterns 259
11.1 Unit testing private methods 260

Private methods and test fragility 260 ■ Private methods and
insufficient coverage 260 ■ When testing private methods is
acceptable 261

11.2 Exposing private state 263
11.3 Leaking domain knowledge to tests 264

CONTENTS xiii

11.4 Code pollution 266
11.5 Mocking concrete classes 268
11.6 Working with time 271

Time as an ambient context 271 ■ Time as an explicit
dependency 272

11.7 Conclusion 273

index 275

xiv

preface
I remember my first project where I tried out unit testing. It went relatively well; but after
it was finished, I looked at the tests and thought that a lot of them were a pure waste of
time. Most of my unit tests spent a great deal of time setting up expectations and wiring
up a complicated web of dependencies—all that, just to check that the three lines of
code in my controller were correct. I couldn’t pinpoint what exactly was wrong with the
tests, but my sense of proportion sent me unambiguous signals that something was off.

 Luckily, I didn’t abandon unit testing and continued applying it in subsequent
projects. However, disagreement with common (at that time) unit testing practices
has been growing in me ever since. Throughout the years, I’ve written a lot about unit
testing. In those writings, I finally managed to crystallize what exactly was wrong with
my first tests and generalized this knowledge to broader areas of unit testing. This
book is a culmination of all my research, trial, and error during that period—compiled,
refined, and distilled.

 I come from a mathematical background and strongly believe that guidelines in
programming, like theorems in math, should be derived from first principles. I’ve
tried to structure this book in a similar way: start with a blank slate by not jumping to
conclusions or throwing around unsubstantiated claims, and gradually build my case
from the ground up. Interestingly enough, once you establish such first principles,
guidelines and best practices often flow naturally as mere implications.

 I believe that unit testing is becoming a de facto requirement for software proj-
ects, and this book will give you everything you need to create valuable, highly main-
tainable tests.

xv

acknowledgments
This book was a lot of work. Even though I was prepared mentally, it was still much
more work than I could ever have imagined.

 A big “thank you” to Sam Zaydel, Alessandro Campeis, Frances Buran, Tiffany
Taylor, and especially Marina Michaels, whose invaluable feedback helped shape the
book and made me a better writer along the way. Thanks also to everyone else at Man-
ning who worked on this book in production and behind the scenes.

 I’d also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided valuable feedback: Aaron Barton,
Alessandro Campeis, Conor Redmond, Dror Helper, Greg Wright, Hemant Koneru,
Jeremy Lange, Jorge Ezequiel Bo, Jort Rodenburg, Mark Nenadov, Marko Umek,
Markus Matzker, Srihari Sridharan, Stephen John Warnett, Sumant Tambe, Tim van
Deurzen, and Vladimir Kuptsov.

 Above all, I would like to thank my wife Nina, who supported me during the whole
process.

