grokking Artificial Intelligence Algorithms

Rishal Hurbans

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

Special Sales Department Manning Publications Co. 20 Baldwin Road, PO Box 761 Shelter Island, NY 11964 Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

© Recognizing the importance of preserving what has been written, it is Manning's policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

Manning Publications Co.Development editor: Elesha Hyde20 Baldwin RoadTechnical development editor: Frances BuontempoShelter Island, NY 11964Review editor: Ivan MartinovićProduction editor: Deirdre HiamCopy editor: Keir SimpsonProofreader: Jason EverettTechnical proofreader: Krzysztof KamyczekTypesetter: Jennifer HouleCover designer: Marija Tudor

ISBN: 9781617296185 Printed in the United States of America To my parents, Pranil and Rekha. To making a positive difference.

contents

preface ix acknowledgments xvii about this book xix about the author xxiii Intuition of artificial intelligence 1 1 What is artificial intelligence? 1 A brief history of artificial intelligence 6 Problem types and problem-solving paradigms 8 Intuition of artificial intelligence concepts 10 Uses for artificial intelligence algorithms 14 2 Search fundamentals 21 What are planning and searching? 21 Cost of computation: The reason for smart algorithms 24 Problems applicable to searching algorithms 25 Representing state: Creating a framework to represent problem spaces and solutions 28 Uninformed search: Looking blindly for solutions 34 Breadth-first search: Looking wide before looking deep 36 Depth-first search: Looking deep before looking wide 45

Use cases for uninformed search algorithms	53
Optional: More about graph categories	54
Optional: More ways to represent graphs	56
3 Intelligent search	59
Defining heuristics: Designing educated guesses	59
Informed search: Looking for solutions with guidance	63
Adversarial search: Looking for solutions in a	
changing environment	72
4 Evolutionary algorithms	91
	•••••
What is evolution?	91
Problems applicable to evolutionary algorithms	95
Genetic algorithm: Life cycle	99
Encoding the solution spaces	102
Creating a population of solutions	108
Measuring fitness of individuals in a population	110
Selecting parents based on their fitness	112
Reproducing individuals from parents	116
Populating the next generation	122
Configuring the parameters of a genetic algorithm	126
Use cases for evolutionary algorithms	127
5 Advanced evolutionary approaches	131
Evolutionary algorithm life cycle	131
Alternative selection strategies	133
Real-value encoding: Working with real numbers	137
Order encoding: Working with sequences	141
Tree encoding: Working with hierarchies	144
Common types of evolutionary algorithms	148
Glossary of evolutionary algorithm terms	149
More use cases for evolutionary algorithms	150

6 Swarm intelligence: Ants	153
What is swarm intelligence?	153
Problems applicable to ant colony optimization	156
Representing state: What do paths and ants look like?	160
The ant colony optimization algorithm life cycle	164
Use cases for ant colony optimization algorithms	187
7 Swarm intelligence: Particles	189
What is particle swarm optimization?	189
Optimization problems: A slightly more technical perspective	192
Problems applicable to particle swarm optimization	195
Representing state: What do particles look like?	198
Particle swarm optimization life cycle	199
Use cases for particle swarm optimization algorithms	223
8 Machine learning	227
What is machine learning?	227
Problems applicable to machine learning	230
A machine learning workflow	232
Classification with decision trees	256
Other popular machine learning algorithms	275
Use cases for machine learning algorithms	276
9 Artificial neural networks	279
What are artificial neural networks?	280
The Perceptron: A representation of a neuron	283
Defining artificial neural networks	287
Forward propagation: Using a trained ANN	295
Backpropagation: Training an ANN	303
Options for activation functions	314
Designing artificial neural networks	316
Artificial neural network types and use cases	319

10 Re	einforcement learning with Q-learning	323
	What is reinforcement learning?	323
	Problems applicable to reinforcement learning	327
	The life cycle of reinforcement learning	329
	Deep learning approaches to reinforcement learning	349
	Use cases for reinforcement learning	350
index		355