grokking Machine Learning

Luis G. Serrano Foreword by Sebastian Thrun

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

Special Sales Department Manning Publications Co. 20 Baldwin Road, PO Box 761 Shelter Island, NY 11964 Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

© Recognizing the importance of preserving what has been written, it is Manning's policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co. Dev 20 Baldwin Road Tec Shelter Island, NY 11964 Rev Pro

Development editor: Marina Michaels Technical development editor: Kris Athi Review editor: Aleksander Dragosavljević Production editor: Keri Hales Copy editor: Pamela Hunt Proofreader: Jason Everett Technical proofreader: Karsten Strøbæk, Shirley Yap Typesetter: Dennis Dalinnik Cover designer: Leslie Haimes

ISBN: 9781617295911 Printed in the United States of America

contents

foreword ix preface xi acknowledgments xiii about this book xv about the author xix What is machine learning? It is common sense, 1 except done by a computer 1 Do I need a heavy math and coding background to understand machine learning? 2 OK, so what exactly is machine learning? 3 How do we get machines to make decisions with data? The remember-formulate-predict framework 6 Types of machine learning 15 2 What is the difference between labeled and unlabeled data? 17 Supervised learning: The branch of machine learning that works with labeled data 18 Unsupervised learning: The branch of machine learning that works with unlabeled data 22 What is reinforcement learning? 29

contents

3	Drawing a line close to our points: Linear regression	35
	The problem: We need to predict the price of a house	37
	The solution: Building a regression model for housing prices	38
	How to get the computer to draw this line: The linear regression	
	algorithm	44
	How do we measure our results? The error function	60
	Real-life application: Using Turi Create to predict housing prices	
	in India	67
	What if the data is not in a line? Polynomial regression	69
	Parameters and hyperparameters	71
	Applications of regression	72
4	Optimizing the training process: Underfitting, overfitting, testing, and regularization	77
•••		
	An example of underfitting and overfitting using polynomial regression	79
	How do we get the computer to pick the right model? By testing	81
	Where did we break the golden rule, and how do we fix it?	
	The validation set	84
	A numerical way to decide how complex our model should be:	05
	The model complexity graph	85
	Another alternative to avoiding overfitting: Regularization	86
	Polynomial regression, testing, and regularization with Turi Create	95
5	Using lines to split our points: The perceptron algorithm	103
•••		
	The problem: We are on an alien planet, and we don't know	
	their language!	106
	How do we determine whether a classifier is good or bad?	101
	The error function	121
	How to find a good classifier? The perceptron algorithm	129
	Coding the perceptron algorithm	137 142
	Applications of the perceptron algorithm	142

6	A continuous approach to splitting points: Logistic classifiers	147
	Logistic classifiers: A continuous version of perceptron classifiers	149
	How to find a good logistic classifier? The logistic regression algorithm	160
	Coding the logistic regression algorithm	166
	Real-life application: Classifying IMDB reviews with Turi Create	171
	Classifying into multiple classes: The softmax function	173
7	How do you measure classification models? Accuracy	
	and its friends	177
	Accuracy: How often is my model correct?	178
	How to fix the accuracy problem? Defining different types of errors	
	and how to measure them	179
	A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve	189
8	Using probability to its maximum: The naive Bayes model	205
	Sick or healthy? A story with Bayes' theorem as the hero	207
	Use case: Spam-detection model	212
	Building a spam-detection model with real data	226
9	Splitting data by asking questions: Decision trees	233
	The problem: We need to recommend apps to users according to	
	what they are likely to download	240
	The solution: Building an app-recommendation system	241
	Beyond questions like yes/no	257
	The graphical boundary of decision trees	261
	Real-life application: Modeling student admissions with Scikit-Learn	264
	Decision trees for regression	268
	Applications	272

contents

10	Combining building blocks to gain more power: Neural networks	277
	Neural networks with an example: A more complicated alien planet	279
	Training neural networks	292
	Coding neural networks in Keras	299
	Neural networks for regression	308
	Other architectures for more complex datasets	309
11	Finding boundaries with style: Support vector machines	
•••	and the kernel method	315
	Using a new error function to build better classifiers	318
	Coding support vector machines in Scikit-Learn	324
	Training SVMs with nonlinear boundaries: The kernel method	326
12	Combining models to maximize results: Ensemble learning	351
	With a little help from our friends	352
	Bagging: Joining some weak learners randomly to build a strong learner	354
	AdaBoost: Joining weak learners in a clever way to build a strong learner	360
	Gradient boosting: Using decision trees to build strong learners	370
	XGBoost: An extreme way to do gradient boosting	375
	Applications of ensemble methods	384
13	Putting it all in practice: A real-life example of data	
	engineering and machine learning	387
•••	• • • • • • • • • • • • • • • • • • • •	
	The Titanic dataset	388
	Cleaning up our dataset: Missing values and how to deal with them	392
	Feature engineering: Transforming the features in our dataset before	
	training the models	395
	Training our models	400
	Tuning the hyperparameters to find the best model: Grid search	405
	Using K-fold cross-validation to reuse our data as training and validation	408